Math Problem Statement

1 divided by root 3 + root 7 + root 6

Solution

We need to simplify the expression:

13+7+6\frac{1}{\sqrt{3} + \sqrt{7} + \sqrt{6}}

Step 1: Multiply by the Conjugate

To rationalize the denominator, we use the conjugate. Since we have three terms, one approach is to multiply by a modified form of the conjugate to simplify radicals.

Let’s multiply the numerator and denominator by 3+76\sqrt{3} + \sqrt{7} - \sqrt{6}:

13+7+6×3+763+76\frac{1}{\sqrt{3} + \sqrt{7} + \sqrt{6}} \times \frac{\sqrt{3} + \sqrt{7} - \sqrt{6}}{\sqrt{3} + \sqrt{7} - \sqrt{6}}

Step 2: Expand the Denominator

Using the identity (a+b+c)(a+bc)=a2+b2c22bc(a+b+c)(a+b-c) = a^2 + b^2 - c^2 - 2bc, we compute:

(3+7+6)(3+76)(\sqrt{3} + \sqrt{7} + \sqrt{6})(\sqrt{3} + \sqrt{7} - \sqrt{6})

Expanding:

(3+7)2(6)2(\sqrt{3} + \sqrt{7})^2 - (\sqrt{6})^2

Computing each term:

(3+7)2=3+7+221=10+221(\sqrt{3} + \sqrt{7})^2 = 3 + 7 + 2\sqrt{21} = 10 + 2\sqrt{21}

(6)2=6(\sqrt{6})^2 = 6

So the denominator simplifies to:

10+2216=4+22110 + 2\sqrt{21} - 6 = 4 + 2\sqrt{21}

Step 3: Simplify

Now our expression is:

3+764+221\frac{\sqrt{3} + \sqrt{7} - \sqrt{6}}{4 + 2\sqrt{21}}

Factor out 2 from the denominator:

3+762(2+21)\frac{\sqrt{3} + \sqrt{7} - \sqrt{6}}{2(2 + \sqrt{21})}

Split:

12×3+762+21\frac{1}{2} \times \frac{\sqrt{3} + \sqrt{7} - \sqrt{6}}{2 + \sqrt{21}}

Step 4: Multiply by the Conjugate Again

Multiply numerator and denominator by 2212 - \sqrt{21}:

(3+76)(221)(2+21)(221)\frac{(\sqrt{3} + \sqrt{7} - \sqrt{6})(2 - \sqrt{21})}{(2+\sqrt{21})(2-\sqrt{21})}

Since (2+21)(221)=421=17(2+\sqrt{21})(2-\sqrt{21}) = 4 - 21 = -17, we now compute the numerator:

(3+76)(221)(\sqrt{3} + \sqrt{7} - \sqrt{6})(2 - \sqrt{21})

Expanding:

23+272663147+1262\sqrt{3} + 2\sqrt{7} - 2\sqrt{6} - \sqrt{63} - \sqrt{147} + \sqrt{126}

Since 63=37\sqrt{63} = 3\sqrt{7}, 147=73\sqrt{147} = 7\sqrt{3}, and 126=314\sqrt{126} = 3\sqrt{14}, we get:

23+27263773+3142\sqrt{3} + 2\sqrt{7} - 2\sqrt{6} - 3\sqrt{7} - 7\sqrt{3} + 3\sqrt{14}

53726+314-5\sqrt{3} - \sqrt{7} - 2\sqrt{6} + 3\sqrt{14}

Dividing by -17, we get:

53726+31434=53+7+2631434\frac{-5\sqrt{3} - \sqrt{7} - 2\sqrt{6} + 3\sqrt{14}}{-34} = \frac{5\sqrt{3} + \sqrt{7} + 2\sqrt{6} - 3\sqrt{14}}{34}

This is the simplified form.


Final Answer:

53+7+2631434\frac{5\sqrt{3} + \sqrt{7} + 2\sqrt{6} - 3\sqrt{14}}{34}

Would you like a more detailed explanation for any step?

Here are some related problems:

  1. Simplify 15+2+3\frac{1}{\sqrt{5} + \sqrt{2} + \sqrt{3}}
  2. Rationalize 173\frac{1}{\sqrt{7} - \sqrt{3}}
  3. Compute 1a+b+c\frac{1}{\sqrt{a} + \sqrt{b} + \sqrt{c}} using general steps
  4. Evaluate 28+18\frac{2}{\sqrt{8} + \sqrt{18}}
  5. Simplify 35+3\frac{3}{\sqrt{5} + \sqrt{3}}

Tip:

When rationalizing a denominator with three terms, try multiplying by a conjugate expression that cancels out some radicals systematically.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Rationalizing Denominators
Radicals

Formulas

Conjugate multiplication for rationalizing the denominator
(a+b+c)(a+b-c) = a^2 + b^2 - c^2 - 2bc

Theorems

Rationalizing Denominators

Suitable Grade Level

Grades 9-12