Math Problem Statement

Write as a single power of 2: a. 4^10 b. 8^x times 2^4 c. 16^2/3 d. 2^x times 4^y times 8^z times 16 e. 2√2 f. 4/3√2 g. 4^1/3 times 8^1/5

Solution

Let's rewrite each expression as a single power of 2.

a. 4104^{10}:

  • 44 is 222^2, so: 410=(22)10=2204^{10} = (2^2)^{10} = 2^{20}

b. 8x×248^x \times 2^4:

  • 88 is 232^3, so: 8x×24=(23)x×24=23x×24=23x+48^x \times 2^4 = (2^3)^x \times 2^4 = 2^{3x} \times 2^4 = 2^{3x+4}

c. 162316^{\frac{2}{3}}:

  • 1616 is 242^4, so: 1623=(24)23=28316^{\frac{2}{3}} = (2^4)^{\frac{2}{3}} = 2^{\frac{8}{3}}

d. 2x×4y×8z×162^x \times 4^y \times 8^z \times 16:

  • Rewrite 44, 88, and 1616 in terms of powers of 2: 2x×(22)y×(23)z×24=2x×22y×23z×24=2x+2y+3z+42^x \times (2^2)^y \times (2^3)^z \times 2^4 = 2^x \times 2^{2y} \times 2^{3z} \times 2^4 = 2^{x+2y+3z+4}

e. 222\sqrt{2}:

  • 2=21/2\sqrt{2} = 2^{1/2}, so: 22=21×21/2=21+12=2322\sqrt{2} = 2^1 \times 2^{1/2} = 2^{1 + \frac{1}{2}} = 2^{\frac{3}{2}}

f. 42\frac{4}{\sqrt{2}}:

  • Rewrite 44 and 2\sqrt{2} as powers of 2: 42=2221/2=2212=232\frac{4}{\sqrt{2}} = \frac{2^2}{2^{1/2}} = 2^{2 - \frac{1}{2}} = 2^{\frac{3}{2}}

g. 41/3×81/54^{1/3} \times 8^{1/5}:

  • Rewrite 44 and 88 as powers of 2: 41/3×81/5=(22)1/3×(23)1/5=223×235=223+35=219154^{1/3} \times 8^{1/5} = (2^2)^{1/3} \times (2^3)^{1/5} = 2^{\frac{2}{3}} \times 2^{\frac{3}{5}} = 2^{\frac{2}{3} + \frac{3}{5}} = 2^{\frac{19}{15}}

Summary:

a. 2202^{20}
b. 23x+42^{3x + 4}
c. 2832^{\frac{8}{3}}
d. 2x+2y+3z+42^{x + 2y + 3z + 4}
e. 2322^{\frac{3}{2}}
f. 2322^{\frac{3}{2}}
g. 219152^{\frac{19}{15}}

Would you like more details on any step?

Here are five related questions:

  1. How do you simplify expressions with fractional exponents?
  2. What are the general properties of exponents?
  3. How do you handle exponents when multiplying or dividing terms?
  4. How would you express roots as fractional powers?
  5. How do you combine terms with different bases and exponents?

Tip: Always express roots and radicals in terms of fractional exponents for easier simplification.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponentiation
Properties of Exponents
Radicals and Fractional Exponents

Formulas

a^m * a^n = a^(m+n)
(a^m)^n = a^(m*n)
a^(m/n) = nth root of a^m
a^(1/2) = sqrt(a)

Theorems

Laws of Exponents

Suitable Grade Level

Grades 9-12