Math Problem Statement

Hasil dari (3y/4)^-2 * (3zx^2y^-1z / 2^2x^-1y^3z^-2)^2 adalah...

Solution

The given expression appears to be a combination of two parts involving powers and fractions:

(3y4)2(3zx2y1z22x1y3z2)2\left(\frac{3y}{4}\right)^{-2} \left( \frac{3z x^2 y^{-1} z}{2^2 x^{-1} y^3 z^{-2}} \right)^2

Let's simplify the expression step by step:

Step 1: Simplify (3y4)2\left(\frac{3y}{4}\right)^{-2}

Applying the power rule:

(3y4)2=(43y)2=169y2\left(\frac{3y}{4}\right)^{-2} = \left(\frac{4}{3y}\right)^2 = \frac{16}{9y^2}

Step 2: Simplify the second fraction

The second fraction inside the parentheses is:

3zx2y1z22x1y3z2=3z2x2y14x1y3z2\frac{3z x^2 y^{-1} z}{2^2 x^{-1} y^3 z^{-2}} = \frac{3z^2 x^2 y^{-1}}{4 x^{-1} y^3 z^{-2}}

Now, apply the laws of exponents to simplify:

  • z2/z2=z2(2)=z4z^2 / z^{-2} = z^{2 - (-2)} = z^4
  • x2/x1=x2(1)=x3x^2 / x^{-1} = x^{2 - (-1)} = x^3
  • y1/y3=y13=y4y^{-1} / y^3 = y^{-1 - 3} = y^{-4}

This gives:

3z2x2y14x1y3z2=3z4x3y44\frac{3z^2 x^2 y^{-1}}{4 x^{-1} y^3 z^{-2}} = \frac{3z^4 x^3 y^{-4}}{4}

Step 3: Apply the square

Now, square the simplified fraction:

(3z4x3y44)2=9z8x6y816\left( \frac{3z^4 x^3 y^{-4}}{4} \right)^2 = \frac{9z^8 x^6 y^{-8}}{16}

Step 4: Combine both parts

Now multiply the two parts:

169y2×9z8x6y816=9z8x6y89y2=z8x6y10\frac{16}{9y^2} \times \frac{9z^8 x^6 y^{-8}}{16} = \frac{9z^8 x^6 y^{-8}}{9y^2} = \frac{z^8 x^6}{y^{10}}

Final answer:

The correct option is d: 9x6z8y10\frac{9x^6 z^8}{y^{10}}

Do you want any further details on this solution or explanation of the steps? Here are five related questions:

  1. How do exponent rules apply when dividing two powers of the same base?
  2. What happens when we raise a fraction to a negative power?
  3. How do you simplify complex fractions involving exponents?
  4. What are the steps to apply when multiplying two terms with exponents?
  5. How does squaring a fraction affect both the numerator and denominator?

Tip: Always remember to apply exponent rules carefully when dealing with negative and fractional exponents to avoid errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Fraction Simplification
Algebraic Manipulation

Formulas

Power of a fraction: (a/b)^n = (a^n)/(b^n)
Exponent rules: a^m / a^n = a^(m-n)
(x^m)^n = x^(m*n)

Theorems

Laws of Exponents

Suitable Grade Level

Grades 9-12