Math Problem Statement
We are given the expression:
e x − ln ( cos 2 ( x ) ) + ln ( 1 + tan 2 ( x ) ) . e x −ln(cos 2 (x))+ln(1+tan 2 (x)). Let's simplify this step by step.
Step 1: Simplifying ln ( cos 2 ( x ) ) ln(cos 2 (x)) We use the logarithmic property ln ( a b )
b ln ( a ) ln(a b )=bln(a), where a
cos ( x ) a=cos(x) and b
2 b=2. Thus,
ln ( cos 2 ( x ) )
2 ln ( cos ( x ) ) . ln(cos 2 (x))=2ln(cos(x)). So the expression becomes:
e x − 2 ln ( cos ( x ) ) + ln ( 1 + tan 2 ( x ) ) . e x −2ln(cos(x))+ln(1+tan 2 (x)). Step 2: Simplifying ln ( 1 + tan 2 ( x ) ) ln(1+tan 2 (x)) Recall the trigonometric identity 1 + tan 2 ( x )
sec 2 ( x ) 1+tan 2 (x)=sec 2 (x). Using this identity, we have:
ln ( 1 + tan 2 ( x ) )
ln ( sec 2 ( x ) )
2 ln ( sec ( x ) ) . ln(1+tan 2 (x))=ln(sec 2 (x))=2ln(sec(x)). Now the expression becomes:
e x − 2 ln ( cos ( x ) ) + 2 ln ( sec ( x ) ) . e x −2ln(cos(x))+2ln(sec(x)). Step 3: Using the identity sec ( x )
1 cos ( x ) sec(x)= cos(x) 1
Next, we use the fact that sec ( x )
1 cos ( x ) sec(x)= cos(x) 1 . Therefore, we can rewrite ln ( sec ( x ) ) ln(sec(x)) as:
ln ( sec ( x ) )
ln ( 1 cos ( x ) )
− ln ( cos ( x ) ) . ln(sec(x))=ln( cos(x) 1 )=−ln(cos(x)). Substituting this into the expression, we get:
e x − 2 ln ( cos ( x ) ) + 2 ( − ln ( cos ( x ) ) )
e x − 2 ln ( cos ( x ) ) − 2 ln ( cos ( x ) ) . e x −2ln(cos(x))+2(−ln(cos(x)))=e x −2ln(cos(x))−2ln(cos(x)). This simplifies further to:
e x − 4 ln ( cos ( x ) ) . e x −4ln(cos(x)). Final Simplified Expression: Thus, the simplified expression is:
e x − 4 ln ( cos ( x ) ) . e x −4ln(cos(x)). what is the true topics of this solution
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Exponential and Logarithmic Functions
Trigonometric Identities
Logarithmic Manipulations
Trigonometric Function Relationships
Simplification Techniques
Formulas
ln(a^b) = b ln(a)
1 + tan^2(x) = sec^2(x)
ln(sec(x)) = −ln(cos(x))
Theorems
Logarithmic Properties
Trigonometric Identities
Suitable Grade Level
Grades 10-12
Related Recommendation
Simplifying e^x - ln(cos^2(x)) + ln(1 + tan^2(x)) Using Logarithmic and Trigonometric Identities
Simplifying e^x - ln(cos^2(x)) + ln(1 + tan^2(x)) Using Logarithmic and Trigonometric Identities
Simplifying Exponential and Logarithmic Expressions with Trigonometric Identities
Simplifying e^x - ln(cos^2(x)) + ln(1 + tan^2(x))
Simplifying the Expression e^x - ln(cos^2(x)) + ln(1 + tan^2(x))