Math Problem Statement

We are given the expression:

e x − ln ⁡ ( cos ⁡ 2 ( x ) ) + ln ⁡ ( 1 + tan ⁡ 2 ( x ) ) . e x −ln(cos 2 (x))+ln(1+tan 2 (x)). Let's simplify this step by step.

Step 1: Simplifying ln ⁡ ( cos ⁡ 2 ( x ) ) ln(cos 2 (x)) We use the logarithmic property ln ⁡ ( a b )

b ln ⁡ ( a ) ln(a b )=bln(a), where a

cos ⁡ ( x ) a=cos(x) and b

2 b=2. Thus,

ln ⁡ ( cos ⁡ 2 ( x ) )

2 ln ⁡ ( cos ⁡ ( x ) ) . ln(cos 2 (x))=2ln(cos(x)). So the expression becomes:

e x − 2 ln ⁡ ( cos ⁡ ( x ) ) + ln ⁡ ( 1 + tan ⁡ 2 ( x ) ) . e x −2ln(cos(x))+ln(1+tan 2 (x)). Step 2: Simplifying ln ⁡ ( 1 + tan ⁡ 2 ( x ) ) ln(1+tan 2 (x)) Recall the trigonometric identity 1 + tan ⁡ 2 ( x )

sec ⁡ 2 ( x ) 1+tan 2 (x)=sec 2 (x). Using this identity, we have:

ln ⁡ ( 1 + tan ⁡ 2 ( x ) )

ln ⁡ ( sec ⁡ 2 ( x ) )

2 ln ⁡ ( sec ⁡ ( x ) ) . ln(1+tan 2 (x))=ln(sec 2 (x))=2ln(sec(x)). Now the expression becomes:

e x − 2 ln ⁡ ( cos ⁡ ( x ) ) + 2 ln ⁡ ( sec ⁡ ( x ) ) . e x −2ln(cos(x))+2ln(sec(x)). Step 3: Using the identity sec ⁡ ( x )

1 cos ⁡ ( x ) sec(x)= cos(x) 1 ​

Next, we use the fact that sec ⁡ ( x )

1 cos ⁡ ( x ) sec(x)= cos(x) 1 ​ . Therefore, we can rewrite ln ⁡ ( sec ⁡ ( x ) ) ln(sec(x)) as:

ln ⁡ ( sec ⁡ ( x ) )

ln ⁡ ( 1 cos ⁡ ( x ) )

− ln ⁡ ( cos ⁡ ( x ) ) . ln(sec(x))=ln( cos(x) 1 ​ )=−ln(cos(x)). Substituting this into the expression, we get:

e x − 2 ln ⁡ ( cos ⁡ ( x ) ) + 2 ( − ln ⁡ ( cos ⁡ ( x ) ) )

e x − 2 ln ⁡ ( cos ⁡ ( x ) ) − 2 ln ⁡ ( cos ⁡ ( x ) ) . e x −2ln(cos(x))+2(−ln(cos(x)))=e x −2ln(cos(x))−2ln(cos(x)). This simplifies further to:

e x − 4 ln ⁡ ( cos ⁡ ( x ) ) . e x −4ln(cos(x)). Final Simplified Expression: Thus, the simplified expression is:

e x − 4 ln ⁡ ( cos ⁡ ( x ) ) . e x −4ln(cos(x)). what is the true topics of this solution

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponential and Logarithmic Functions
Trigonometric Identities
Logarithmic Manipulations
Trigonometric Function Relationships
Simplification Techniques

Formulas

ln(a^b) = b ln(a)
1 + tan^2(x) = sec^2(x)
ln(sec(x)) = −ln(cos(x))

Theorems

Logarithmic Properties
Trigonometric Identities

Suitable Grade Level

Grades 10-12