Math Problem Statement

Prompt: Consider the expression e^x-ln(cos^2(x))+ln(1+tan^2(x)) and then simplify it into a single term.

Solution

We are tasked with simplifying the expression:

exln(cos2(x))+ln(1+tan2(x))e^x - \ln(\cos^2(x)) + \ln(1 + \tan^2(x))

Step-by-Step Simplification

  1. Use logarithmic identities:

    • Recall the logarithmic identity ln(ab)=bln(a)\ln(a^b) = b \cdot \ln(a).
    • Therefore, ln(cos2(x))=2ln(cos(x))\ln(\cos^2(x)) = 2 \cdot \ln(\cos(x)).

    The expression now becomes: ex2ln(cos(x))+ln(1+tan2(x))e^x - 2 \cdot \ln(\cos(x)) + \ln(1 + \tan^2(x))

  2. Substitute the trigonometric identity for tan2(x)\tan^2(x):

    • Recall that 1+tan2(x)=sec2(x)1 + \tan^2(x) = \sec^2(x).
    • Therefore, ln(1+tan2(x))=ln(sec2(x))=2ln(sec(x))\ln(1 + \tan^2(x)) = \ln(\sec^2(x)) = 2 \cdot \ln(\sec(x)).

    The expression is now: ex2ln(cos(x))+2ln(sec(x))e^x - 2 \cdot \ln(\cos(x)) + 2 \cdot \ln(\sec(x))

  3. Simplify the logarithmic terms:

    • Recall that sec(x)=1cos(x)\sec(x) = \frac{1}{\cos(x)}, so ln(sec(x))=ln(cos(x))\ln(\sec(x)) = -\ln(\cos(x)).
    • Now, substitute this into the expression: ex2ln(cos(x))+2(ln(cos(x)))e^x - 2 \cdot \ln(\cos(x)) + 2 \cdot (-\ln(\cos(x)))
    • This simplifies to: ex2ln(cos(x))2ln(cos(x))e^x - 2 \cdot \ln(\cos(x)) - 2 \cdot \ln(\cos(x))
  4. Combine the logarithmic terms: ex4ln(cos(x))e^x - 4 \cdot \ln(\cos(x))

Thus, the simplified expression is: ex4ln(cos(x))e^x - 4 \cdot \ln(\cos(x))

Would you like further explanation or details on any of these steps?

Related Questions:

  1. What are the key properties of logarithmic functions?
  2. How does the chain rule apply when differentiating ex4ln(cos(x))e^x - 4 \cdot \ln(\cos(x))?
  3. What other trigonometric identities are commonly used in calculus?
  4. How can we integrate ex4ln(cos(x))e^x - 4 \cdot \ln(\cos(x))?
  5. What are the typical forms of simplifications using logarithmic identities?

Tip: Trigonometric identities and logarithmic properties often work together to simplify complex expressions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Identities
Trigonometric Identities
Exponential Functions

Formulas

Logarithmic Identity: ln(a^b) = b * ln(a)
Trigonometric Identity: 1 + tan^2(x) = sec^2(x)
Relationship: sec(x) = 1/cos(x)

Theorems

Properties of Logarithms
Trigonometric Identities

Suitable Grade Level

Grades 11-12