Let’s solve the given problems step by step.
Exercise 12.1
1. Evaluate:
(i) 3−2:
3−2=321=91
(ii) (−4)−2:
(−4)−2=(−4)21=161
(iii) (21)−5:
(21)−5=(12)5=25=32
2. Simplify and express the result in power notation with positive exponents:
(i) (−4)5÷(−4)8:
Using the property am÷an=am−n:
(−4)5÷(−4)8=(−4)5−8=(−4)−3
Expressed as a positive exponent:
(−4)−3=(−4)31=−641
(ii) (231)2:
Using the property (ba)m=bmam:
(231)2=(23)212=261=641
(iii) (−3)4×(35)4:
(−3)4×(35)4=34(−3)4⋅54
Since (−3)4=34:
=3434⋅54=54=625
(iv) (3−7÷3−10)×3−5:
Using am÷an=am−n:
3−7÷3−10=3−7−(−10)=33
Now multiply 33×3−5:
33+(−5)=3−2=321=91
(v) 2−3×(−7)−3:
2−3=231=81,(−7)−3=(−7)31=−3431
2−3×(−7)−3=81×−3431=−27441
3. Find the value of:
(i) (30+4−1)×22:
30=1,4−1=41,22=4
(30+4−1)×22=(1+41)×4=45×4=5
(ii) (2−1×4−1)÷2−2:
2−1=21,4−1=41,2−2=221=41
(2−1×4−1)÷2−2=(21×41)÷41=81÷41=81×4=84=21
(iii) (21)−2+(31)−2+(41)−2:
Using (a1)−n=an:
(21)−2=22=4,(31)−2=32=9,(41)−2=42=16
(21)−2+(31)−2+(41)−2=4+9+16=29
Let me know if you'd like more details or help with similar problems!
Related Questions to Expand Understanding:
- What is the difference between negative and fractional exponents?
- How do you simplify powers when the base is a fraction?
- What is the significance of zero exponents in algebra?
- How do exponent rules apply to complex bases like (−3)4?
- How do you handle exponentiation in compound expressions like (ambn)p?
Tip:
Always simplify exponents step by step using rules like am⋅an=am+n and (am)n=amn.