Math Problem Statement

solve

Solve Exercise 12.1, which involves evaluating exponents, simplifying expressions using power rules, and calculating specific values.

Solution

Let’s solve the given problems step by step.


Exercise 12.1

1. Evaluate:

(i) 323^{-2}:
32=132=193^{-2} = \frac{1}{3^2} = \frac{1}{9}

(ii) (4)2(-4)^{-2}:
(4)2=1(4)2=116(-4)^{-2} = \frac{1}{(-4)^2} = \frac{1}{16}

(iii) (12)5\left(\frac{1}{2}\right)^{-5}:
(12)5=(21)5=25=32\left(\frac{1}{2}\right)^{-5} = \left(\frac{2}{1}\right)^5 = 2^5 = 32


2. Simplify and express the result in power notation with positive exponents:

(i) (4)5÷(4)8(-4)^5 \div (-4)^8:
Using the property am÷an=amna^m \div a^n = a^{m-n}:
(4)5÷(4)8=(4)58=(4)3(-4)^5 \div (-4)^8 = (-4)^{5-8} = (-4)^{-3}
Expressed as a positive exponent:
(4)3=1(4)3=164(-4)^{-3} = \frac{1}{(-4)^3} = \frac{1}{-64}

(ii) (123)2\left(\frac{1}{2^3}\right)^2:
Using the property (ab)m=ambm\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}:
(123)2=12(23)2=126=164\left(\frac{1}{2^3}\right)^2 = \frac{1^2}{(2^3)^2} = \frac{1}{2^6} = \frac{1}{64}

(iii) (3)4×(53)4(-3)^4 \times \left(\frac{5}{3}\right)^4:
(3)4×(53)4=(3)45434(-3)^4 \times \left(\frac{5}{3}\right)^4 = \frac{(-3)^4 \cdot 5^4}{3^4}
Since (3)4=34(-3)^4 = 3^4:
=345434=54=625= \frac{3^4 \cdot 5^4}{3^4} = 5^4 = 625

(iv) (37÷310)×35(3^{-7} \div 3^{-10}) \times 3^{-5}:
Using am÷an=amna^m \div a^n = a^{m-n}:
37÷310=37(10)=333^{-7} \div 3^{-10} = 3^{-7 - (-10)} = 3^{3}
Now multiply 33×353^3 \times 3^{-5}:
33+(5)=32=132=193^{3 + (-5)} = 3^{-2} = \frac{1}{3^2} = \frac{1}{9}

(v) 23×(7)32^{-3} \times (-7)^{-3}:
23=123=18,(7)3=1(7)3=13432^{-3} = \frac{1}{2^3} = \frac{1}{8}, \quad (-7)^{-3} = \frac{1}{(-7)^3} = \frac{1}{-343}
23×(7)3=18×1343=127442^{-3} \times (-7)^{-3} = \frac{1}{8} \times \frac{1}{-343} = \frac{1}{-2744}


3. Find the value of:

(i) (30+41)×22(3^0 + 4^{-1}) \times 2^2:
30=1,41=14,22=43^0 = 1, \quad 4^{-1} = \frac{1}{4}, \quad 2^2 = 4
(30+41)×22=(1+14)×4=54×4=5(3^0 + 4^{-1}) \times 2^2 = \left(1 + \frac{1}{4}\right) \times 4 = \frac{5}{4} \times 4 = 5

(ii) (21×41)÷22(2^{-1} \times 4^{-1}) \div 2^{-2}:
21=12,41=14,22=122=142^{-1} = \frac{1}{2}, \quad 4^{-1} = \frac{1}{4}, \quad 2^{-2} = \frac{1}{2^2} = \frac{1}{4}
(21×41)÷22=(12×14)÷14=18÷14=18×4=48=12(2^{-1} \times 4^{-1}) \div 2^{-2} = \left(\frac{1}{2} \times \frac{1}{4}\right) \div \frac{1}{4} = \frac{1}{8} \div \frac{1}{4} = \frac{1}{8} \times 4 = \frac{4}{8} = \frac{1}{2}

(iii) (12)2+(13)2+(14)2\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}:
Using (1a)n=an\left(\frac{1}{a}\right)^{-n} = a^n:
(12)2=22=4,(13)2=32=9,(14)2=42=16\left(\frac{1}{2}\right)^{-2} = 2^2 = 4, \quad \left(\frac{1}{3}\right)^{-2} = 3^2 = 9, \quad \left(\frac{1}{4}\right)^{-2} = 4^2 = 16
(12)2+(13)2+(14)2=4+9+16=29\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2} = 4 + 9 + 16 = 29


Let me know if you'd like more details or help with similar problems!

Related Questions to Expand Understanding:

  1. What is the difference between negative and fractional exponents?
  2. How do you simplify powers when the base is a fraction?
  3. What is the significance of zero exponents in algebra?
  4. How do exponent rules apply to complex bases like (3)4(-3)^4?
  5. How do you handle exponentiation in compound expressions like (ambn)p(a^m b^n)^p?

Tip:

Always simplify exponents step by step using rules like aman=am+na^m \cdot a^n = a^{m+n} and (am)n=amn(a^m)^n = a^{mn}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Negative Exponents
Power Rules
Simplification

Formulas

a^m ÷ a^n = a^(m-n)
(a^m)^n = a^(m*n)
a^(-m) = 1/(a^m)
(a/b)^m = a^m/b^m

Theorems

Exponent Laws

Suitable Grade Level

Grades 7-9