Math Problem Statement

Determine the value of the given powers, rewrite in terms of base-2 powers, and compute numerical results for provided expressions involving powers.

Solution

Thank you for sharing the exercise sheet! I'll solve each section step by step. Let's begin:


Section 1: Determina o valor de cada uma das potências

1.1 525^2

52=5×5=255^2 = 5 \times 5 = 25

1.2 (2)4(-2)^4

(2)4=(2)×(2)×(2)×(2)=16(-2)^4 = (-2) \times (-2) \times (-2) \times (-2) = 16

1.3 (1)3(-1)^3

(1)3=(1)×(1)×(1)=1(-1)^3 = (-1) \times (-1) \times (-1) = -1

1.4 (3)3(-3)^3

(3)3=(3)×(3)×(3)=27(-3)^3 = (-3) \times (-3) \times (-3) = -27

1.5 606^0

60=1(any number raised to 0 is 1, except 0)6^0 = 1 \quad \text{(any number raised to 0 is 1, except 0)}

1.6 323^{-2}

32=132=193^{-2} = \frac{1}{3^2} = \frac{1}{9}

1.7 (2)4(-2)^{-4}

(2)4=1(2)4=116(-2)^{-4} = \frac{1}{(-2)^4} = \frac{1}{16}

1.8 (12)3\left(\frac{-1}{2}\right)^{-3}

(12)3=1(12)3=118=8\left(\frac{-1}{2}\right)^{-3} = \frac{1}{\left(\frac{-1}{2}\right)^3} = \frac{1}{\frac{-1}{8}} = -8

1.9 (23)2\left(\frac{-2}{3}\right)^{-2}

(23)2=1(23)2=149=94\left(\frac{-2}{3}\right)^{-2} = \frac{1}{\left(\frac{-2}{3}\right)^2} = \frac{1}{\frac{4}{9}} = \frac{9}{4}

1.10 (20/3)1(2^0 / 3)^{-1}

20=1,so 203=13.2^0 = 1, \quad \text{so } \frac{2^0}{3} = \frac{1}{3}. (13)1=3\left(\frac{1}{3}\right)^{-1} = 3


Section 2: Calcula o valor de cada uma das potências

2.1 838^3

83=8×8×8=5128^3 = 8 \times 8 \times 8 = 512

2.2 4324^{\frac{3}{2}}

432=(4)3=23=84^{\frac{3}{2}} = \left(\sqrt{4}\right)^3 = 2^3 = 8


Section 3: Escreve na forma de potência de base 2

3.1 (24)3(2^4)^3

(24)3=24×3=212(2^4)^3 = 2^{4 \times 3} = 2^{12}

3.2 (18)21\left(\frac{1}{8}\right)^{-21}

18=23,so (18)21=(23)21=23×21=263\frac{1}{8} = 2^{-3}, \quad \text{so } \left(\frac{1}{8}\right)^{-21} = (2^{-3})^{-21} = 2^{-3 \times -21} = 2^{63}

3.3 243\sqrt[3]{2^4}

243=243\sqrt[3]{2^4} = 2^{\frac{4}{3}}

3.4 (23)35\sqrt[5]{\left(\frac{2}{3}\right)^3}

(23)35=(23)35\sqrt[5]{\left(\frac{2}{3}\right)^3} = \left(\frac{2}{3}\right)^{\frac{3}{5}}


Section 4: Calcula o valor numérico das expressões

4.1 326×3283^{-26} \times 3^{28}

326×328=326+28=32=93^{-26} \times 3^{28} = 3^{-26 + 28} = 3^2 = 9

4.2 (2)36×(2)37(-2)^{36} \times (-2)^{-37}

(2)36×(2)37=(2)3637=(2)1=12(-2)^{36} \times (-2)^{-37} = (-2)^{36 - 37} = (-2)^{-1} = \frac{-1}{2}

4.3 526+5285^{-26} + 5^{-28}

526=1526,528=1528.5^{-26} = \frac{1}{5^{26}}, \quad 5^{-28} = \frac{1}{5^{28}}. Adding these yields 1526+1528=25528.\text{Adding these yields } \frac{1}{5^{26}} + \frac{1}{5^{28}} = \frac{25}{5^{28}}.

4.4 (3)2+(3)2(-3)^{-2} + (-3)^{-2}

(3)2=1(3)2=19.(-3)^{-2} = \frac{1}{(-3)^2} = \frac{1}{9}. 19+19=29.\frac{1}{9} + \frac{1}{9} = \frac{2}{9}.

4.5 36x×(3x)636^x \times (3^x)^6

36=62=(32)2=34.36 = 6^2 = (3^2)^2 = 3^4. 36x×(3x)6=(34)x×(36)x=34x×36x=310x.36^x \times (3^x)^6 = (3^4)^x \times (3^6)^x = 3^{4x} \times 3^{6x} = 3^{10x}.

4.6 (13)x×(13)6+64\left(\frac{1}{3}\right)^x \times \left(\frac{1}{3}\right)^6 + 6^{-4}

(13)x×(13)6=(13)x+6=3(x+6).\left(\frac{1}{3}\right)^x \times \left(\frac{1}{3}\right)^6 = \left(\frac{1}{3}\right)^{x+6} = 3^{-(x+6)}. 64=164.6^{-4} = \frac{1}{6^4}.


Would you like further explanations for any part?

Here are 5 related questions for practice:

  1. Simplify (53)4(5^3)^4.
  2. Rewrite 164\sqrt[4]{16} as a power of 2.
  3. Compute (14)2\left(\frac{1}{4}\right)^{-2}.
  4. Simplify (1)n(-1)^n where nn is odd.
  5. Find 25×232^{-5} \times 2^{3}.

Tip: When dealing with negative exponents, remember an=1ana^{-n} = \frac{1}{a^n}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Negative Exponents
Rational Exponents
Simplification of Powers
Base Conversion for Exponents

Formulas

a^m * a^n = a^(m+n)
(a^m)^n = a^(m*n)
a^-n = 1/(a^n)
a^(m/n) = (n√a)^m

Theorems

Properties of Exponents
Rules for Negative and Fractional Exponents

Suitable Grade Level

Grades 9-11