Thank you for sharing the exercise sheet! I'll solve each section step by step. Let's begin:
Section 1: Determina o valor de cada uma das potências
1.1 52
52=5×5=25
1.2 (−2)4
(−2)4=(−2)×(−2)×(−2)×(−2)=16
1.3 (−1)3
(−1)3=(−1)×(−1)×(−1)=−1
1.4 (−3)3
(−3)3=(−3)×(−3)×(−3)=−27
1.5 60
60=1(any number raised to 0 is 1, except 0)
1.6 3−2
3−2=321=91
1.7 (−2)−4
(−2)−4=(−2)41=161
1.8 (2−1)−3
(2−1)−3=(2−1)31=8−11=−8
1.9 (3−2)−2
(3−2)−2=(3−2)21=941=49
1.10 (20/3)−1
20=1,so 320=31.
(31)−1=3
Section 2: Calcula o valor de cada uma das potências
2.1 83
83=8×8×8=512
2.2 423
423=(4)3=23=8
Section 3: Escreve na forma de potência de base 2
3.1 (24)3
(24)3=24×3=212
3.2 (81)−21
81=2−3,so (81)−21=(2−3)−21=2−3×−21=263
3.3 324
324=234
3.4 5(32)3
5(32)3=(32)53
Section 4: Calcula o valor numérico das expressões
4.1 3−26×328
3−26×328=3−26+28=32=9
4.2 (−2)36×(−2)−37
(−2)36×(−2)−37=(−2)36−37=(−2)−1=2−1
4.3 5−26+5−28
5−26=5261,5−28=5281.
Adding these yields 5261+5281=52825.
4.4 (−3)−2+(−3)−2
(−3)−2=(−3)21=91.
91+91=92.
4.5 36x×(3x)6
36=62=(32)2=34.
36x×(3x)6=(34)x×(36)x=34x×36x=310x.
4.6 (31)x×(31)6+6−4
(31)x×(31)6=(31)x+6=3−(x+6).
6−4=641.
Would you like further explanations for any part?
Here are 5 related questions for practice:
- Simplify (53)4.
- Rewrite 416 as a power of 2.
- Compute (41)−2.
- Simplify (−1)n where n is odd.
- Find 2−5×23.
Tip: When dealing with negative exponents, remember a−n=an1.