Math Problem Statement

1. Nilai dari 3^2 × 3^-2 × 3^3 2. Nilai dari 8^(2/3) 3. Hitunglah 2^2 + 4^2 + 6^2 4. √5 × 3√5 × 2√8 5. √10 × √2 6. 8√2 + 4√2 + 8√2

Solution

Let's go through the questions one by one based on the image you've provided:

  1. 32×32×333^2 \times 3^{-2} \times 3^3:

    • Using the laws of exponents, am×an=am+na^m \times a^n = a^{m+n}.
    • So, 32×32=32+(2)=30=13^2 \times 3^{-2} = 3^{2 + (-2)} = 3^0 = 1.
    • Then 1×33=33=271 \times 3^3 = 3^3 = 27.
    • Answer: 27
  2. 8238^{\frac{2}{3}}:

    • This represents the cube root of 8 squared.
    • 823=(83)2=22=48^{\frac{2}{3}} = \left( \sqrt[3]{8} \right)^2 = 2^2 = 4.
    • Answer: 4
  3. 22+42+622^2 + 4^2 + 6^2:

    • Squaring each term:
      • 22=42^2 = 4,
      • 42=164^2 = 16,
      • 62=366^2 = 36.
    • Adding them: 4+16+36=564 + 16 + 36 = 56.
    • Answer: 56
  4. 5×35×28\sqrt{5} \times 3\sqrt{5} \times 2\sqrt{8}:

    • Simplify each part:
      • 5×35=3(5)2=3×5=15\sqrt{5} \times 3\sqrt{5} = 3(\sqrt{5})^2 = 3 \times 5 = 15,
      • 8=22\sqrt{8} = 2\sqrt{2}, so 28=422\sqrt{8} = 4\sqrt{2}.
    • Final expression: 15×42=60215 \times 4\sqrt{2} = 60\sqrt{2}.
    • Answer: 60260\sqrt{2}.
  5. 10×2\sqrt{10} \times \sqrt{2}:

    • Multiply under the same square root:
      • 10×2=10×2=20\sqrt{10} \times \sqrt{2} = \sqrt{10 \times 2} = \sqrt{20}.
    • Simplify 20=25\sqrt{20} = 2\sqrt{5}.
    • Answer: 252\sqrt{5}.
  6. 82+42+828\sqrt{2} + 4\sqrt{2} + 8\sqrt{2}:

    • Combine like terms (since all are multiples of 2\sqrt{2}):
      • 82+42+82=(8+4+8)2=2028\sqrt{2} + 4\sqrt{2} + 8\sqrt{2} = (8 + 4 + 8)\sqrt{2} = 20\sqrt{2}.
    • Answer: 20220\sqrt{2}.

Would you like further details or explanations on any of these solutions? Here are some additional practice problems:

  1. Simplify 34×31×323^4 \times 3^{-1} \times 3^2.
  2. Evaluate 163416^{\frac{3}{4}}.
  3. What is the sum of squares of 3,5,3, 5, and 77?
  4. Simplify 23×532\sqrt{3} \times 5\sqrt{3}.
  5. Multiply 6×3\sqrt{6} \times \sqrt{3}.

Tip: When multiplying square roots, remember that a×b=a×b\sqrt{a} \times \sqrt{b} = \sqrt{a \times b}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Square Roots
Algebraic Simplification
Pythagorean Theorem

Formulas

a^m × a^n = a^(m+n)
(a^(m/n)) = n√(a^m)
√a × √b = √(a × b)

Theorems

-

Suitable Grade Level

Grades 8-10