Math Problem Statement

Mathematical problems related to simplifying expressions using properties of powers and evaluating expressions with exponents.

Solution

I see that you've uploaded a photo containing mathematical exercises. Let me transcribe and solve them for you step by step.

ΘΕΜΑ 1:

You are asked to find the value of the following expression:

A=25(3)+(2)3142(1)A = \frac{-2 - 5 \cdot (-3) + (-2)^3}{-1 - 4 \cdot 2 - (-1)}

Let's break it down and solve it:

Numerator:

25(3)+(2)3=2+15+(8)=5-2 - 5 \cdot (-3) + (-2)^3 = -2 + 15 + (-8) = 5

Denominator:

142(1)=18+1=8-1 - 4 \cdot 2 - (-1) = -1 - 8 + 1 = -8

Thus, the value of AA becomes:

A=58=58A = \frac{5}{-8} = -\frac{5}{8}

ΘΕΜΑ 2:

We are asked to simplify the following expressions using the properties of powers.

(a)

(2)32225(2)622\frac{(-2)^{-3} \cdot 2^2 \cdot 2^{-5}}{(-2)^6 \cdot 2^{-2}}

Using the rule aman=am+na^m \cdot a^n = a^{m+n}, we simplify both the numerator and denominator.

Numerator:

(2)32225=(2)3225=(2)323(-2)^{-3} \cdot 2^2 \cdot 2^{-5} = (-2)^{-3} \cdot 2^{2-5} = (-2)^{-3} \cdot 2^{-3}

Denominator:

(2)622(-2)^6 \cdot 2^{-2}

The full expression becomes:

(2)323(2)622=(2)3623+2=(2)921\frac{(-2)^{-3} \cdot 2^{-3}}{(-2)^6 \cdot 2^{-2}} = (-2)^{-3 - 6} \cdot 2^{-3+2} = (-2)^{-9} \cdot 2^{-1}

Now, we can simplify:

=1(2)92=15122=11024= \frac{1}{(-2)^9 \cdot 2} = \frac{1}{-512 \cdot 2} = \frac{1}{-1024}

(b)

(3)3(4)23322\frac{(-3)^3 \cdot (-4)^2}{3^3 \cdot 2^2}

Simplifying both numerator and denominator:

Numerator:

(3)3(4)2=2716=432(-3)^3 \cdot (-4)^2 = -27 \cdot 16 = -432

Denominator:

3322=274=1083^3 \cdot 2^2 = 27 \cdot 4 = 108

Thus, the expression becomes:

432108=4\frac{-432}{108} = -4

ΘΕΜΑ 3:

You are asked to simplify these expressions using properties of exponents.

(a)

(2)6(22)4210(2)7\frac{(-2)^{-6} \cdot (2^2)^{-4}}{2^{-10} \cdot (-2)^7}

Simplifying using the power rules:

(2)6=1(2)6,(22)4=28,(2)7=128(-2)^{-6} = \frac{1}{(-2)^6}, \quad (2^2)^{-4} = 2^{-8}, \quad (-2)^7 = -128

After simplification:

=16428210(128)=16428(128)=132768= \frac{\frac{1}{64} \cdot 2^{-8}}{2^{-10} \cdot (-128)} = \frac{1}{64 \cdot 2^8 \cdot (-128)} = \frac{1}{-32768}

(b)

[(1)2021]2022[(-1)^{2021}]^{2022}

This simplifies as:

(1)20212022=(1)4088442(-1)^{2021 \cdot 2022} = (-1)^{4088442}

Since the exponent is odd, the result is:

(1)odd=1(-1)^{\text{odd}} = -1


Do you want more details or have any questions on these solutions?

Related Questions:

  1. How can powers with negative bases be simplified when combined with exponents?
  2. What are the key exponent rules needed to simplify expressions like those in ΘΕΜΑ 2?
  3. How do you handle exponents that are large but have simple bases like 1 or -1?
  4. What steps can be followed to break down complex fractions involving powers?
  5. Why does the sign change for odd versus even powers of negative numbers?

Tip:

Always simplify exponents by applying the basic rules such as aman=am+na^m \cdot a^n = a^{m+n}, and handle negative bases carefully based on whether the exponent is odd or even!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Exponents
Properties of Powers
Simplifying Expressions

Formulas

a^m * a^n = a^{m+n}
a^m / a^n = a^{m-n}
(-a)^n depends on whether n is odd or even

Theorems

Exponent Laws

Suitable Grade Level

Grades 7-9