The image contains an exercise asking to express mathematical expressions as powers. Let's break them down one by one:
a) (−5)−2⋅2−2
Using the property of exponents:
(−5)−2=(−5)21=251,2−2=221=41
Thus:
(−5)−2⋅2−2=251⋅41=1001
b) \left(\frac{2}{3}\right)^{-3} \cdot \left(\frac{2}{3}\right)^{-2}
Using the property of exponents:
(32)−3⋅(32)−2=(32)−3−2=(32)−5
Then:
(32)−5=(32)51=2535=32243
c) \left(\frac{2}{7}\right)^{5} \cdot \left(\frac{2}{7}\right)^{-2}
Using the same exponent rule:
(72)5⋅(72)−2=(72)5−2=(72)3
d) \left(\frac{4}{5}\right)^{-5} \cdot \left(\frac{4}{5}\right)^{-5}
Again applying the exponent rule:
(54)−5⋅(54)−5=(54)−5−5=(54)−10
Thus:
(54)−10=(54)101=410510
e) \left((-0.1)^2\right)^0
Any number raised to the power of 0 is 1:
((−0.1)2)0=1
f) (3,37)−3
Apply the negative exponent rule:
(3,37)−3=(3.37)31
g) 0.32⋅0.3−5
Simplify using the rule for multiplying powers:
0.32⋅0.3−5=0.32−5=0.3−3
Thus:
0.3−3=0.331
h) (−3)3⋅(−4)3
Calculate each separately:
(−3)3=−27,(−4)3=−64
Then:
(−3)3⋅(−4)3=(−27)⋅(−64)=1728
i) 37⋅2.57
Using the same base exponent rule:
37⋅2.57=(3⋅2.5)7=7.57
j) (−2.5)−3⋅(−2.5)4
Using exponent rules:
(−2.5)−3⋅(−2.5)4=(−2.5)−3+4=(−2.5)1=−2.5
k) (2,4−2)5
Simplifying inside the parentheses:
2.4−2=2.421
Now:
(2.421)5=2.4101
l) \left(\left(2 \cdot \frac{3}{4}\right)^{-3}\right)^{-2}
First simplify the fraction:
2⋅43=46=1.5
Then apply the exponents:
(1.5)−3=1.531
And then:
(1.531)−2=1.56
Let me know if you'd like further details or explanations!
Here are five related questions to expand on this:
- What are the key rules of exponents used in these problems?
- How do negative exponents affect the base number?
- Why does any base raised to the power of zero equal 1?
- How do fractional exponents relate to roots?
- How do you simplify expressions with the same base raised to different powers?
Tip: When multiplying numbers with the same base, simply add the exponents.