Math Problem Statement

Simplify: (A) Sin(2460°) (B) tan(- 150°)

Solution

To simplify trigonometric functions for angles, it's important to reduce the angles to their standard form, which lies between 00^\circ and 360360^\circ. Here's how we can simplify each expression:

(A) Simplify sin(2460)\sin(2460^\circ)

  1. Reduce 24602460^\circ to an equivalent angle between 00^\circ and 360360^\circ:

    We can reduce any angle by subtracting multiples of 360360^\circ (since one full rotation is 360360^\circ):

    2460÷360=6.83332460^\circ \div 360^\circ = 6.8333

    So, subtract 360×6=2160360^\circ \times 6 = 2160^\circ from 24602460^\circ:

    24602160=3002460^\circ - 2160^\circ = 300^\circ

    Therefore:

    sin(2460)=sin(300)\sin(2460^\circ) = \sin(300^\circ)

  2. Evaluate sin(300)\sin(300^\circ):

    300300^\circ lies in the fourth quadrant, where the sine function is negative. The reference angle for 300300^\circ is 360300=60360^\circ - 300^\circ = 60^\circ.

    Therefore:

    sin(300)=sin(60)=32\sin(300^\circ) = -\sin(60^\circ) = -\frac{\sqrt{3}}{2}

    So:

    sin(2460)=32\sin(2460^\circ) = -\frac{\sqrt{3}}{2}

(B) Simplify tan(150)\tan(-150^\circ)

  1. Reduce 150-150^\circ to a positive angle:

    To convert a negative angle into a positive one, add 360360^\circ:

    150+360=210-150^\circ + 360^\circ = 210^\circ

    Therefore:

    tan(150)=tan(210)\tan(-150^\circ) = \tan(210^\circ)

  2. Evaluate tan(210)\tan(210^\circ):

    210210^\circ lies in the third quadrant, where the tangent function is positive. The reference angle for 210210^\circ is 210180=30210^\circ - 180^\circ = 30^\circ.

    Therefore:

    tan(210)=tan(30)=13\tan(210^\circ) = \tan(30^\circ) = \frac{1}{\sqrt{3}}

    So:

    tan(150)=13\tan(-150^\circ) = \frac{1}{\sqrt{3}}

Would you like further details or have any questions?

Here are 5 related questions:

  1. Simplify cos(750)\cos(750^\circ).
  2. Simplify sin(45)\sin(-45^\circ).
  3. Simplify tan(1020)\tan(1020^\circ).
  4. Find the exact value of cos(330)\cos(330^\circ).
  5. Simplify cot(210)\cot(210^\circ).

Tip: For trigonometric functions, always reduce the angle to within 00^\circ to 360360^\circ first to simplify calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Conversion
Trigonometric Functions

Formulas

Angle reduction formula
Reference angle formula

Theorems

Trigonometric identities

Suitable Grade Level

High School