Math Problem Statement

Nyatakan perbandingan trigonometri berikut ini ke dalam perbandingan trigonometri sudut lancip: sin 528°, cos 634°, cosec 432°, sec 567°, tan 872°, cos 1182°, tan 2100°, sin 1563°, sec 987°, tan 1123°, sec 1567°, cosec 1445°.

Solution

The problem asks to express trigonometric ratios with large angles into their corresponding acute angles using standard trigonometric identities. We can reduce each angle by subtracting multiples of 360° (since trigonometric functions are periodic with a period of 360°) to convert them into an equivalent angle within the first circle (0° to 360°), and then apply the necessary transformations to represent them in terms of acute angles.

Let's break this down for each part:

a) sin528\sin 528^\circ

To reduce: 528360=168528^\circ - 360^\circ = 168^\circ Now, using sin(180θ)=sin(θ)\sin(180^\circ - \theta) = \sin(\theta): sin(528)=sin(168)=sin(12)\sin(528^\circ) = \sin(168^\circ) = \sin(12^\circ)

b) cos634\cos 634^\circ

To reduce: 634360=274634^\circ - 360^\circ = 274^\circ Using cos(360θ)=cos(θ)\cos(360^\circ - \theta) = \cos(\theta): cos(634)=cos(274)=sin(4)\cos(634^\circ) = \cos(274^\circ) = -\sin(4^\circ)

c) csc432\csc 432^\circ

To reduce: 432360=72432^\circ - 360^\circ = 72^\circ The cosecant function follows the same rule as sine. Therefore: csc(432)=csc(72)\csc(432^\circ) = \csc(72^\circ)

d) sec567\sec 567^\circ

To reduce: 567360=207567^\circ - 360^\circ = 207^\circ Using sec(180+θ)=sec(θ)\sec(180^\circ + \theta) = -\sec(\theta): sec(567)=sec(27)\sec(567^\circ) = -\sec(27^\circ)

e) tan872\tan 872^\circ

To reduce: 872720=152872^\circ - 720^\circ = 152^\circ Using tan(180θ)=tan(θ)\tan(180^\circ - \theta) = -\tan(\theta): tan(872)=tan(28)\tan(872^\circ) = -\tan(28^\circ)

f) cos1182\cos 1182^\circ

To reduce: 11821080=1021182^\circ - 1080^\circ = 102^\circ Using cos(180θ)=cos(θ)\cos(180^\circ - \theta) = -\cos(\theta): cos(1182)=cos(78)\cos(1182^\circ) = -\cos(78^\circ)

g) tan2100\tan 2100^\circ

To reduce: 21001980=1202100^\circ - 1980^\circ = 120^\circ Using tan(180θ)=tan(θ)\tan(180^\circ - \theta) = -\tan(\theta): tan(2100)=tan(60)\tan(2100^\circ) = -\tan(60^\circ)

h) sin1563\sin 1563^\circ

To reduce: 15631440=1231563^\circ - 1440^\circ = 123^\circ Using sin(180θ)=sin(θ)\sin(180^\circ - \theta) = \sin(\theta): sin(1563)=sin(57)\sin(1563^\circ) = \sin(57^\circ)

i) sec987\sec 987^\circ

To reduce: 987720=267987^\circ - 720^\circ = 267^\circ Using sec(360θ)=sec(θ)\sec(360^\circ - \theta) = \sec(\theta): sec(987)=sec(87)\sec(987^\circ) = -\sec(87^\circ)

j) tan1123\tan 1123^\circ

To reduce: 11231080=431123^\circ - 1080^\circ = 43^\circ Thus: tan(1123)=tan(43)\tan(1123^\circ) = \tan(43^\circ)

k) sec1567\sec 1567^\circ

To reduce: 15671440=1271567^\circ - 1440^\circ = 127^\circ Using sec(180θ)=sec(θ)\sec(180^\circ - \theta) = -\sec(\theta): sec(1567)=sec(53)\sec(1567^\circ) = -\sec(53^\circ)

l) csc1445\csc 1445^\circ

To reduce: 14451080=365360=51445^\circ - 1080^\circ = 365^\circ - 360^\circ = 5^\circ Thus: csc(1445)=csc(5)\csc(1445^\circ) = \csc(5^\circ)

Would you like further details or explanations on any of these reductions? Here are five follow-up questions to consider:

  1. How does the periodicity of trigonometric functions help in simplifying angles?
  2. Why is it important to express trigonometric ratios in terms of acute angles?
  3. Can you identify the quadrant for each angle after reducing them to the range 00^\circ to 360360^\circ?
  4. What is the significance of applying the co-function identities for 180180^\circ and 360360^\circ?
  5. How can we use unit circle properties to understand the signs of trigonometric functions in different quadrants?

Tip: Always reduce angles greater than 360° by subtracting multiples of 360° to simplify calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Reduction
Periodic Functions

Formulas

sin(180° - θ) = sin(θ)
cos(360° - θ) = cos(θ)
tan(180° - θ) = -tan(θ)
cosec(180° - θ) = cosec(θ)
sec(180° + θ) = -sec(θ)

Theorems

Trigonometric Identities
Periodicity of Trigonometric Functions

Suitable Grade Level

Grades 10-12