Math Problem Statement

Evaluate the following trigonometric expressions: (a) sin(765°) (b) cos(-60°) (c) cosec(-1410°) (d) sec(240°) (e) tan(780°) (f) sin(-225°) (g) cot(210°) (h) sec(135°)

Solution

Let's evaluate each trigonometric expression by reducing the angles to their equivalent within the standard range [0,360][0^\circ, 360^\circ].

Solution:

  1. (a) sin(765)\sin(765^\circ):

    • 765mod360=45765^\circ \mod 360^\circ = 45^\circ
    • sin(765)=sin(45)=22\sin(765^\circ) = \sin(45^\circ) = \frac{\sqrt{2}}{2}
  2. (b) cos(60)\cos(-60^\circ):

    • 60+360=300-60^\circ + 360^\circ = 300^\circ
    • cos(60)=cos(300)=12\cos(-60^\circ) = \cos(300^\circ) = \frac{1}{2}
  3. (c) csc(1410)\csc(-1410^\circ):

    • 1410+4×360=1410+1440=30-1410^\circ + 4 \times 360^\circ = -1410 + 1440 = 30^\circ
    • csc(1410)=csc(30)=2\csc(-1410^\circ) = \csc(30^\circ) = 2
  4. (d) sec(240)\sec(240^\circ):

    • sec(240)=sec(240)=2\sec(240^\circ) = \sec(240^\circ) = -2 (since sec(240)=1cos(240)=2\sec(240^\circ) = \frac{1}{\cos(240^\circ)} = -2)
  5. (e) tan(780)\tan(780^\circ):

    • 780mod360=60780^\circ \mod 360^\circ = 60^\circ
    • tan(780)=tan(60)=3\tan(780^\circ) = \tan(60^\circ) = \sqrt{3}
  6. (f) sin(225)\sin(-225^\circ):

    • 225+360=135-225^\circ + 360^\circ = 135^\circ
    • sin(225)=sin(135)=22\sin(-225^\circ) = \sin(135^\circ) = \frac{\sqrt{2}}{2}
  7. (g) cot(210)\cot(210^\circ):

    • cot(210)=cot(210)=1tan(210)=1tan(30)=3\cot(210^\circ) = \cot(210^\circ) = \frac{1}{\tan(210^\circ)} = \frac{1}{\tan(30^\circ)} = \sqrt{3}
  8. (h) sec(135)\sec(135^\circ):

    • ( \sec(135^\circ) = -\sec(135^\circ)

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Reduction
Trigonometric Ratios

Formulas

sin(θ + 360°k) = sin(θ)
cos(θ + 360°k) = cos(θ)
tan(θ + 360°k) = tan(θ)
cosec(θ) = 1 / sin(θ)
sec(θ) = 1 / cos(θ)
cot(θ) = 1 / tan(θ)

Theorems

Periodic Properties of Trigonometric Functions

Suitable Grade Level

Grades 10-12