Math Problem Statement

1. Perform the indicated operations and if possible, simplify your answers. Leave all answers in terms of sin(θ) and cos(θ). a) sec(θ) cot(θ) b) tan^2(θ) - sec^2(θ) c) csc(θ) - sin(θ) 2. Using sum and difference formulas, show that: a) sin(2x) sin(3x) + cos(2x) cos(3x) = cos(x) b) cos(π - x) sin(x) + sin(π - x) cos(x) = 0 (note that π rad = 180 degrees).

Solution

Let's go through the questions shown in the image.

1. Perform the indicated operations and, if possible, simplify your answers. Leave all answers in terms of sinθ\sin \theta and cosθ\cos \theta.

a) secθcotθ\sec \theta \cot \theta

Start by expressing secθ\sec \theta and cotθ\cot \theta in terms of sinθ\sin \theta and cosθ\cos \theta: secθ=1cosθ,cotθ=cosθsinθ\sec \theta = \frac{1}{\cos \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta} Now multiply them together: secθcotθ=1cosθcosθsinθ=1sinθ\sec \theta \cot \theta = \frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta} = \frac{1}{\sin \theta} So, the simplified form is: secθcotθ=cscθ\sec \theta \cot \theta = \csc \theta

b) tan2θsec2θ\tan^2 \theta - \sec^2 \theta

Use the trigonometric identity sec2θtan2θ=1\sec^2 \theta - \tan^2 \theta = 1, then rearrange it: tan2θsec2θ=1\tan^2 \theta - \sec^2 \theta = -1

c) cscθsinθ\csc \theta - \sin \theta

Express cscθ\csc \theta in terms of sinθ\sin \theta: cscθ=1sinθ\csc \theta = \frac{1}{\sin \theta} Now subtract sinθ\sin \theta: cscθsinθ=1sinθsinθ\csc \theta - \sin \theta = \frac{1}{\sin \theta} - \sin \theta Combine the terms: =1sin2θsinθ= \frac{1 - \sin^2 \theta}{\sin \theta} Using the identity 1sin2θ=cos2θ1 - \sin^2 \theta = \cos^2 \theta: cscθsinθ=cos2θsinθ\csc \theta - \sin \theta = \frac{\cos^2 \theta}{\sin \theta}

2. Using sum and difference formulas, show that:

a) sin(2x)sin(3x)+cos(2x)cos(3x)=cos(x)\sin(2x) \sin(3x) + \cos(2x) \cos(3x) = \cos(x)

This is a direct application of the sum formula for cosine: cos(AB)=cosAcosB+sinAsinB\cos(A - B) = \cos A \cos B + \sin A \sin B Set A=3xA = 3x and B=2xB = 2x: cos(3x2x)=cos(3x)cos(2x)+sin(3x)sin(2x)\cos(3x - 2x) = \cos(3x) \cos(2x) + \sin(3x) \sin(2x) This simplifies to: cos(x)=cos(2x)cos(3x)+sin(2x)sin(3x)\cos(x) = \cos(2x) \cos(3x) + \sin(2x) \sin(3x) Thus, the expression holds.

b) cos(πx)sin(x)+sin(πx)cos(x)=0\cos(\pi - x) \sin(x) + \sin(\pi - x) \cos(x) = 0

Using the known identities: cos(πx)=cos(x),sin(πx)=sin(x)\cos(\pi - x) = -\cos(x), \quad \sin(\pi - x) = \sin(x) Substitute these into the expression: cos(x)sin(x)+sin(x)cos(x)-\cos(x) \sin(x) + \sin(x) \cos(x) This simplifies to: cos(x)sin(x)+cos(x)sin(x)=0-\cos(x) \sin(x) + \cos(x) \sin(x) = 0

Would you like further details or have any questions?

Related questions:

  1. How do the reciprocal identities (e.g., secθ\sec \theta, cscθ\csc \theta) relate to the basic trigonometric functions?
  2. Can you prove sec2θtan2θ=1\sec^2 \theta - \tan^2 \theta = 1 using the Pythagorean identity?
  3. How would the expressions change if the problem used tan\tan and cot\cot instead of sec\sec and csc\csc?
  4. What are some applications of sum and difference formulas in solving real-world problems?
  5. Can you apply the same process to derive the difference formula for sine?

Tip:

Always try simplifying trigonometric expressions using identities like the Pythagorean identities, reciprocal identities, and sum/difference formulas.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric identities
Sum and Difference formulas

Formulas

sec(θ) = 1/cos(θ), cot(θ) = cos(θ)/sin(θ)
sec^2(θ) - tan^2(θ) = 1
cos(A - B) = cos(A)cos(B) + sin(A)sin(B)
cos(π - x) = -cos(x), sin(π - x) = sin(x)

Theorems

Trigonometric Identities
Sum and Difference Formulas for Sine and Cosine

Suitable Grade Level

Grades 10-12