Math Problem Statement

Express each of the following as a single trigonometric ratio.

Solution

Let’s work through each of these expressions and simplify them into single trigonometric ratios:

a) 2sin5xcos5x2 \sin 5x \cos 5x

Using the double-angle identity: sin2A=2sinAcosA\sin 2A = 2 \sin A \cos A Substituting A=5xA = 5x, we get: 2sin5xcos5x=sin10x2 \sin 5x \cos 5x = \sin 10x

b) cos2θsin2θ\cos^2 \theta - \sin^2 \theta

Using the cosine double-angle identity: cos2θ=cos2θsin2θ\cos 2\theta = \cos^2 \theta - \sin^2 \theta This simplifies directly to: cos2θsin2θ=cos2θ\cos^2 \theta - \sin^2 \theta = \cos 2\theta

c) 12sin23x1 - 2 \sin^2 3x

Using the cosine double-angle identity: cos2A=12sin2A\cos 2A = 1 - 2 \sin^2 A Substituting A=3xA = 3x, we get: 12sin23x=cos6x1 - 2 \sin^2 3x = \cos 6x

d) 2tan4x1tan24x\frac{2 \tan 4x}{1 - \tan^2 4x}

Using the tangent double-angle identity: tan2A=2tanA1tan2A\tan 2A = \frac{2 \tan A}{1 - \tan^2 A} Substituting A=4xA = 4x, we get: 2tan4x1tan24x=tan8x\frac{2 \tan 4x}{1 - \tan^2 4x} = \tan 8x

e) 4sinθcosθ4 \sin \theta \cos \theta

Using the double-angle identity sin2A=2sinAcosA\sin 2A = 2 \sin A \cos A: 4sinθcosθ=22sinθcosθ=2sin2θ4 \sin \theta \cos \theta = 2 \cdot 2 \sin \theta \cos \theta = 2 \sin 2\theta

f) 2cos2θ212 \cos^2 \frac{\theta}{2} - 1

Using the cosine double-angle identity: cos2A=2cos2A1\cos 2A = 2 \cos^2 A - 1 Substituting A=θ2A = \frac{\theta}{2}, we get: 2cos2θ21=cosθ2 \cos^2 \frac{\theta}{2} - 1 = \cos \theta

Final Simplified Expressions:

a) sin10x\sin 10x
b) cos2θ\cos 2\theta
c) cos6x\cos 6x
d) tan8x\tan 8x
e) 2sin2θ2 \sin 2\theta
f) cosθ\cos \theta

Would you like further clarifications or visual explanations?


Here are 5 related questions to deepen your understanding:

  1. What are the derivations of the trigonometric double-angle identities?
  2. How do you use product-to-sum identities to simplify similar expressions?
  3. Can you generalize these concepts for triple-angle identities?
  4. How do these transformations help in solving trigonometric equations?
  5. What are some common mistakes when applying these identities?

Tip: Always verify which identity applies best by matching the form of the equation with standard trigonometric identities.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Identities
Double-Angle Formulas
Simplification of Trigonometric Expressions

Formulas

sin(2A) = 2 sin(A) cos(A)
cos(2A) = cos^2(A) - sin^2(A)
tan(2A) = (2 tan(A)) / (1 - tan^2(A))

Theorems

Double-Angle Theorem
Trigonometric Simplification Rules

Suitable Grade Level

Grades 10-12