Math Problem Statement

IK SNAP VANAF HIER NIE MEER

IK SNAP VANAF HIER NIE MEER

Solution

Let's simplify the given trigonometric expression:

The expression is:

2sin(4α)cos(3α)+2sin(4α)cos(α)2cos(4α)cos(3α)+2cos(4α)cos(α)\frac{2 \sin(4\alpha) \cos(-3\alpha) + 2 \sin(4\alpha) \cos(-\alpha)}{2 \cos(4\alpha) \cos(-3\alpha) + 2 \cos(4\alpha) \cos(-\alpha)}

Step 1: Factor out the common terms

Both the numerator and denominator have a common factor of 22, which can be canceled:

[ \frac{2 \left[\sin(4\alpha) \cos(-3\alpha) + \sin(4\alpha) \cos(-\alpha)\right]}{2 \left[\cos(4\alpha) \cos(-3\alpha) + \cos(4\alpha) \cos(-\alpha)\right]} ]

Cancel the 22's:

sin(4α)cos(3α)+sin(4α)cos(α)cos(4α)cos(3α)+cos(4α)cos(α)\frac{\sin(4\alpha) \cos(-3\alpha) + \sin(4\alpha) \cos(-\alpha)}{\cos(4\alpha) \cos(-3\alpha) + \cos(4\alpha) \cos(-\alpha)}

Step 2: Simplify using trigonometric properties

The cosine function is even, meaning cos(x)=cos(x)\cos(-x) = \cos(x), and the sine function is odd, meaning sin(x)=sin(x)\sin(-x) = -\sin(x). Apply this to the expression:

  • cos(3α)=cos(3α)\cos(-3\alpha) = \cos(3\alpha)
  • cos(α)=cos(α)\cos(-\alpha) = \cos(\alpha)

Thus, the expression becomes:

sin(4α)cos(3α)+sin(4α)cos(α)cos(4α)cos(3α)+cos(4α)cos(α).\frac{\sin(4\alpha)\cos(3\alpha) + \sin(4\alpha)\cos(\alpha)}{\cos(4\alpha)\cos(3\alpha) + \cos(4\alpha)\cos(\alpha)}.

Step 3: Factor out common terms in both numerator and denominator

In the numerator, factor out sin(4α)\sin(4\alpha), and in the denominator, factor out cos(4α)\cos(4\alpha):

[ \frac{\sin(4\alpha)\left[\cos(3\alpha) + \cos(\alpha)\right]}{\cos(4\alpha)\left[\cos(3\alpha) + \cos(\alpha)\right]}. ]

Step 4: Cancel the common term

If cos(3α)+cos(α)0\cos(3\alpha) + \cos(\alpha) \neq 0, then we can cancel [cos(3α)+cos(α)]\left[\cos(3\alpha) + \cos(\alpha)\right] from both numerator and denominator:

sin(4α)cos(4α).\frac{\sin(4\alpha)}{\cos(4\alpha)}.

Step 5: Final Simplification

The resulting expression simplifies to:

tan(4α).\tan(4\alpha).


Final Answer:

The simplified expression is:

tan(4α).\tan(4\alpha).

Let me know if you would like further clarification or a breakdown of any steps!


Related Questions:

  1. What are the properties of sine and cosine for negative angles?
  2. How do you simplify expressions involving common factors in trigonometry?
  3. What is the tangent function in terms of sine and cosine?
  4. Can the tangent function be expressed using double or multiple angles?
  5. How do you prove trigonometric identities step by step?

Tip:

When simplifying trigonometric expressions, always check for common factors and use trigonometric properties such as the evenness of cosine and the oddness of sine.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Simplification of Trigonometric Expressions
Properties of Sine and Cosine

Formulas

cos(-x) = cos(x) [Even property of cosine]
sin(-x) = -sin(x) [Odd property of sine]
tan(x) = sin(x) / cos(x)

Theorems

Even-Odd Trigonometric Identities
Simplification using Common Factors

Suitable Grade Level

Grades 10-12