Math Problem Statement

Which one of the following is equivalent to (csc(θ) (sec²(θ) - 1)) / sec(θ)?

Solution

To simplify the given expression:

cscθ(sec2θ1)secθ\frac{\csc \theta (\sec^2 \theta - 1)}{\sec \theta}


Step-by-step Solution:

  1. Recall a Pythagorean Identity:

sec2θ1=tan2θ\sec^2 \theta - 1 = \tan^2 \theta

This identity comes directly from sec2θ=1+tan2θ\sec^2 \theta = 1 + \tan^2 \theta.


  1. Substitute into the Expression:

cscθ(sec2θ1)secθ    cscθ(tan2θ)secθ\frac{\csc \theta (\sec^2 \theta - 1)}{\sec \theta} \implies \frac{\csc \theta (\tan^2 \theta)}{\sec \theta}


  1. Rewrite Trigonometric Functions:

cscθ=1sinθ,secθ=1cosθ,tanθ=sinθcosθ\csc \theta = \frac{1}{\sin \theta}, \quad \sec \theta = \frac{1}{\cos \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta}

Thus:

tan2θ=(sinθcosθ)2=sin2θcos2θ\tan^2 \theta = \left( \frac{\sin \theta}{\cos \theta} \right)^2 = \frac{\sin^2 \theta}{\cos^2 \theta}


  1. Substitute These Values:

cscθ(tan2θ)secθ=(1sinθ)(sin2θcos2θ)1cosθ\frac{\csc \theta (\tan^2 \theta)}{\sec \theta} = \frac{\left( \frac{1}{\sin \theta} \right) \left( \frac{\sin^2 \theta}{\cos^2 \theta} \right)}{\frac{1}{\cos \theta}}


  1. Simplify the Expression:
  • Combine terms in the numerator:

1sinθsin2θcos2θ=sin2θsinθcos2θ=sinθcos2θ\frac{1}{\sin \theta} \cdot \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\sin^2 \theta}{\sin \theta \cos^2 \theta} = \frac{\sin \theta}{\cos^2 \theta}

  • Divide by 1cosθ\frac{1}{\cos \theta} in the denominator:

sinθcos2θ1cosθ=sinθcos2θcosθ=sinθcosθcos2θ\frac{\frac{\sin \theta}{\cos^2 \theta}}{\frac{1}{\cos \theta}} = \frac{\sin \theta}{\cos^2 \theta} \cdot \cos \theta = \frac{\sin \theta \cos \theta}{\cos^2 \theta}

Simplify further:

sinθcosθcos2θ=sinθcosθ\frac{\sin \theta \cos \theta}{\cos^2 \theta} = \frac{\sin \theta}{\cos \theta}


  1. Recognize the Simplified Result:

sinθcosθ=tanθ\frac{\sin \theta}{\cos \theta} = \tan \theta


Final Answer:

The expression is equivalent to (C) tanθ\tan \theta.


Do you need further clarification or additional steps? Here are 5 related questions:

  1. How do you derive the identity sec2θ1=tan2θ\sec^2 \theta - 1 = \tan^2 \theta?
  2. What are the basic Pythagorean identities in trigonometry?
  3. How do you simplify expressions involving cscθ\csc \theta and secθ\sec \theta?
  4. Can you explain how to rewrite trigonometric functions in terms of sine and cosine?
  5. How do you simplify complex trigonometric fractions?

Tip: Always simplify trigonometric expressions using fundamental identities like Pythagorean identities and definitions of functions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Identities
Simplification of Trigonometric Expressions

Formulas

sec²(θ) - 1 = tan²(θ)
csc(θ) = 1/sin(θ)
sec(θ) = 1/cos(θ)
tan(θ) = sin(θ)/cos(θ)

Theorems

Pythagorean Identity for sec²(θ)

Suitable Grade Level

Grades 10-12