Math Problem Statement

Simplify \(\frac{\sin(x+y)}{\sin x \sin y}\) given \(\cot x = 15\) and \(\cot y = -13\).

Solution

Let’s analyze and solve the provided expression:

The given expression is:

sin(x+y)sinxsiny, with cotx=15 and coty=13.\frac{\sin(x+y)}{\sin x \sin y}, \text{ with } \cot x = 15 \text{ and } \cot y = -13.

Step 1: Using trigonometric identities

  1. From cotx=15\cot x = 15, we know: cotx=cosxsinx.\cot x = \frac{\cos x}{\sin x}. Using the Pythagorean identity: 1+cot2x=csc2x.1 + \cot^2 x = \csc^2 x. Substituting cotx=15\cot x = 15: 1+152=csc2x    csc2x=226    sin2x=1226.1 + 15^2 = \csc^2 x \implies \csc^2 x = 226 \implies \sin^2 x = \frac{1}{226}. Hence: sinx=1226,cosx=cotx1+cot2x=15226.\sin x = \frac{1}{\sqrt{226}}, \quad \cos x = \frac{\cot x}{\sqrt{1 + \cot^2 x}} = \frac{15}{\sqrt{226}}.

  2. For coty=13\cot y = -13, a similar approach: 1+cot2y=csc2y.1 + \cot^2 y = \csc^2 y. Substituting coty=13\cot y = -13: 1+(13)2=csc2y    csc2y=170    sin2y=1170.1 + (-13)^2 = \csc^2 y \implies \csc^2 y = 170 \implies \sin^2 y = \frac{1}{170}. Hence: siny=1170,cosy=coty1+cot2y=13170.\sin y = \frac{1}{\sqrt{170}}, \quad \cos y = \frac{\cot y}{\sqrt{1 + \cot^2 y}} = \frac{-13}{\sqrt{170}}.

Step 2: Simplify sin(x+y)\sin(x + y)

The formula for sin(x+y)\sin(x + y) is: sin(x+y)=sinxcosy+cosxsiny.\sin(x + y) = \sin x \cos y + \cos x \sin y. Substitute the values: sin(x+y)=122613170+152261170.\sin(x + y) = \frac{1}{\sqrt{226}} \cdot \frac{-13}{\sqrt{170}} + \frac{15}{\sqrt{226}} \cdot \frac{1}{\sqrt{170}}. sin(x+y)=13226170+15226170.\sin(x + y) = \frac{-13}{\sqrt{226} \cdot \sqrt{170}} + \frac{15}{\sqrt{226} \cdot \sqrt{170}}. sin(x+y)=13+15226170=2226170.\sin(x + y) = \frac{-13 + 15}{\sqrt{226} \cdot \sqrt{170}} = \frac{2}{\sqrt{226} \cdot \sqrt{170}}.

Step 3: Simplify the denominator

The denominator sinxsiny\sin x \sin y is: sinxsiny=12261170=1226170.\sin x \sin y = \frac{1}{\sqrt{226}} \cdot \frac{1}{\sqrt{170}} = \frac{1}{\sqrt{226} \cdot \sqrt{170}}.

Step 4: Solve the entire expression

The entire expression becomes: sin(x+y)sinxsiny=22261701226170.\frac{\sin(x + y)}{\sin x \sin y} = \frac{\frac{2}{\sqrt{226} \cdot \sqrt{170}}}{\frac{1}{\sqrt{226} \cdot \sqrt{170}}}. Simplify: sin(x+y)sinxsiny=2.\frac{\sin(x + y)}{\sin x \sin y} = 2.

Final Answer:

sin(x+y)sinxsiny=2.\frac{\sin(x+y)}{\sin x \sin y} = 2.

Let me know if you would like further clarifications or steps! Here are five related questions you might find interesting:

  1. How do we simplify trigonometric expressions involving addition or subtraction?
  2. What is the relationship between cotx\cot x and other trigonometric ratios?
  3. How can sin2x+cos2x=1\sin^2 x + \cos^2 x = 1 help simplify more complicated identities?
  4. How do we determine the quadrant of angles based on trigonometric values?
  5. How can this method apply to real-world problems involving angles?

Tip: Always check the quadrant of the given angles to determine the correct signs for sin\sin, cos\cos, and other trigonometric functions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities

Formulas

\(\sin(x + y) = \sin x \cos y + \cos x \sin y\)
\(\cot x = \frac{\cos x}{\sin x}\)
\(1 + \cot^2 x = \csc^2 x\)

Theorems

Pythagorean Trigonometric Identities

Suitable Grade Level

Grades 10-12