Math Problem Statement

((1-cos2x)/2)³ ((1+cos2x)/2)²

Solution

You want to simplify the expression (1cos(2x)2)3(1+cos(2x)2)2\left( \frac{1 - \cos(2x)}{2} \right)^3 \left( \frac{1 + \cos(2x)}{2} \right)^2

Step-by-step simplification:

  1. The expression can be written as: (1cos(2x))323(1+cos(2x))222\frac{(1 - \cos(2x))^3}{2^3} \cdot \frac{(1 + \cos(2x))^2}{2^2} Which simplifies to: (1cos(2x))3(1+cos(2x))225\frac{(1 - \cos(2x))^3 (1 + \cos(2x))^2}{2^5}

  2. Now observe the product (1cos(2x))3(1+cos(2x))2(1 - \cos(2x))^3 (1 + \cos(2x))^2. To simplify it further, let's break it down:

    • We know that (1cos(2x))(1+cos(2x))=1cos2(2x)(1 - \cos(2x))(1 + \cos(2x)) = 1 - \cos^2(2x).
    • So, the expression becomes: (1cos2(2x))(1cos(2x))225\frac{(1 - \cos^2(2x)) (1 - \cos(2x))^2}{2^5}
    • Since 1cos2(2x)=sin2(2x)1 - \cos^2(2x) = \sin^2(2x), we get: sin2(2x)(1cos(2x))232\frac{\sin^2(2x) (1 - \cos(2x))^2}{32}

Thus, the simplified expression is: sin2(2x)(1cos(2x))232\frac{\sin^2(2x) (1 - \cos(2x))^2}{32}

Final Answer:

sin2(2x)(1cos(2x))232\frac{\sin^2(2x) (1 - \cos(2x))^2}{32}

Let me know if you'd like to explore this further or have any questions!


Here are 5 questions to expand the topic:

  1. How does the identity sin2(2x)=1cos2(2x)\sin^2(2x) = 1 - \cos^2(2x) help in simplifying expressions?
  2. What are the common trigonometric identities used in simplifying similar expressions?
  3. Can this expression be simplified further for specific values of xx?
  4. How does the symmetry of sine and cosine functions influence expression simplifications?
  5. How does knowing basic trigonometric identities help in solving calculus problems?

Tip: Trigonometric identities like sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1 and the double-angle formulas are powerful tools for simplifying complex expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Algebra
Trigonometric Identities

Formulas

(1 - cos(2x))(1 + cos(2x)) = 1 - cos^2(2x)
1 - cos^2(2x) = sin^2(2x)

Theorems

Pythagorean Identity: sin^2(x) + cos^2(x) = 1
Double-Angle Formulas

Suitable Grade Level

Grades 10-12