Math Problem Statement

Simplify the trigonometric expression: \( \frac{\tan(\alpha - \frac{\pi}{2}) - \cot(\pi - \alpha) + \cos(\alpha + \frac{3\pi}{2})}{\sin(\pi - \alpha)} \).

Solution

To solve the given trigonometric expression:

Expression:

tan(απ2)cot(πα)+cos(α+3π2)sin(πα)\frac{\tan\left(\alpha - \frac{\pi}{2}\right) - \cot\left(\pi - \alpha\right) + \cos\left(\alpha + \frac{3\pi}{2}\right)}{\sin\left(\pi - \alpha\right)}

Step-by-Step Solution:

  1. Simplify each term:

    • tan(απ2)\tan\left(\alpha - \frac{\pi}{2}\right): Using the identity tan(xπ2)=cot(x)\tan(x - \frac{\pi}{2}) = -\cot(x), tan(απ2)=cot(α).\tan\left(\alpha - \frac{\pi}{2}\right) = -\cot(\alpha).

    • cot(πα)\cot\left(\pi - \alpha\right): Using the identity cot(πx)=cot(x)\cot(\pi - x) = -\cot(x), cot(πα)=cot(α).\cot\left(\pi - \alpha\right) = -\cot(\alpha).

    • cos(α+3π2)\cos\left(\alpha + \frac{3\pi}{2}\right): Using the identity cos(x+2π)=cos(x)\cos(x + 2\pi) = \cos(x) and cos(x+π2)=sin(x)\cos(x + \frac{\pi}{2}) = -\sin(x), cos(α+3π2)=sin(α).\cos\left(\alpha + \frac{3\pi}{2}\right) = -\sin(\alpha).

    • sin(πα)\sin\left(\pi - \alpha\right): Using the identity sin(πx)=sin(x)\sin(\pi - x) = \sin(x), sin(πα)=sin(α).\sin\left(\pi - \alpha\right) = \sin(\alpha).

  2. Substitute these simplified terms into the expression: Substituting back: tan(απ2)cot(πα)+cos(α+3π2)sin(πα)\frac{\tan\left(\alpha - \frac{\pi}{2}\right) - \cot\left(\pi - \alpha\right) + \cos\left(\alpha + \frac{3\pi}{2}\right)}{\sin\left(\pi - \alpha\right)} becomes: cot(α)(cot(α))sin(α)sin(α).\frac{-\cot(\alpha) - (-\cot(\alpha)) - \sin(\alpha)}{\sin(\alpha)}.

  3. Simplify the numerator: Combine terms in the numerator: cot(α)+cot(α)sin(α)=sin(α).-\cot(\alpha) + \cot(\alpha) - \sin(\alpha) = -\sin(\alpha).

    So the expression simplifies to: sin(α)sin(α).\frac{-\sin(\alpha)}{\sin(\alpha)}.

  4. Simplify the fraction: sin(α)sin(α)=1, provided sin(α)0.\frac{-\sin(\alpha)}{\sin(\alpha)} = -1, \text{ provided } \sin(\alpha) \neq 0.

Final Answer:

1, for sin(α)0.\boxed{-1}, \text{ for } \sin(\alpha) \neq 0.


Let me know if you'd like a deeper explanation or have further questions! Here are five related questions:

  1. What happens if sin(α)=0\sin(\alpha) = 0 in the original expression?
  2. Can we generalize this type of trigonometric simplification?
  3. What are the geometric interpretations of these trigonometric identities?
  4. How would the result change if the numerator involved different trigonometric functions?
  5. How does the periodicity of trigonometric functions affect this calculation?

Tip:

Always check for domain restrictions (like sin(α)0\sin(\alpha) \neq 0) when simplifying trigonometric expressions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Simplification of Trigonometric Expressions

Formulas

\( \tan(x - \frac{\pi}{2}) = -\cot(x) \)
\( \cot(\pi - x) = -\cot(x) \)
\( \cos(x + \frac{3\pi}{2}) = -\sin(x) \)
\( \sin(\pi - x) = \sin(x) \)

Theorems

Trigonometric Identities

Suitable Grade Level

Grades 10-12