Math Problem Statement

Simplify the expression \(\frac{\sqrt{2} + \sqrt{3} - \sqrt{5}}{\sqrt{2} + \sqrt{3} + \sqrt{5}}\).

Solution

The given mathematical problem in the image is:

2+352+3+5=?\frac{\sqrt{2} + \sqrt{3} - \sqrt{5}}{\sqrt{2} + \sqrt{3} + \sqrt{5}} = ?

Let us solve this step by step:


Step 1: Rationalize the denominator

To simplify the given expression, multiply the numerator and the denominator by the conjugate of the denominator (2+35)(\sqrt{2} + \sqrt{3} - \sqrt{5}). The conjugate is obtained by flipping the sign of the last term of the denominator.

Conjugate of the denominator: 2+35\text{Conjugate of the denominator: } \sqrt{2} + \sqrt{3} - \sqrt{5}

Thus, the expression becomes:

2+352+3+52+352+35\frac{\sqrt{2} + \sqrt{3} - \sqrt{5}}{\sqrt{2} + \sqrt{3} + \sqrt{5}} \cdot \frac{\sqrt{2} + \sqrt{3} - \sqrt{5}}{\sqrt{2} + \sqrt{3} - \sqrt{5}}


Step 2: Simplify the denominator

The denominator is of the form (a+b)(ab)(a + b)(a - b), where a=2+3a = \sqrt{2} + \sqrt{3} and b=5b = \sqrt{5}. Using the difference of squares formula:

(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2

Here: a2=(2+3)2=(2)2+2(2)(3)+(3)2=2+26+3=5+26a^2 = (\sqrt{2} + \sqrt{3})^2 = (\sqrt{2})^2 + 2(\sqrt{2})(\sqrt{3}) + (\sqrt{3})^2 = 2 + 2\sqrt{6} + 3 = 5 + 2\sqrt{6}

b2=(5)2=5b^2 = (\sqrt{5})^2 = 5

So: Denominator: a2b2=(5+26)5=26\text{Denominator: } a^2 - b^2 = (5 + 2\sqrt{6}) - 5 = 2\sqrt{6}


Step 3: Simplify the numerator

The numerator is (2+35)2(\sqrt{2} + \sqrt{3} - \sqrt{5})^2. Expanding this:

(2+35)2=(2)2+(3)2+(5)2+2(2)(3)2(2)(5)2(3)(5)(\sqrt{2} + \sqrt{3} - \sqrt{5})^2 = (\sqrt{2})^2 + (\sqrt{3})^2 + (\sqrt{5})^2 + 2(\sqrt{2})(\sqrt{3}) - 2(\sqrt{2})(\sqrt{5}) - 2(\sqrt{3})(\sqrt{5})

=2+3+5+26210215= 2 + 3 + 5 + 2\sqrt{6} - 2\sqrt{10} - 2\sqrt{15}

=10+26210215= 10 + 2\sqrt{6} - 2\sqrt{10} - 2\sqrt{15}


Step 4: Write the simplified fraction

Now, the fraction becomes:

10+2621021526\frac{10 + 2\sqrt{6} - 2\sqrt{10} - 2\sqrt{15}}{2\sqrt{6}}


Step 5: Simplify each term

Divide each term in the numerator by the denominator (262\sqrt{6}):

1026+26262102621526\frac{10}{2\sqrt{6}} + \frac{2\sqrt{6}}{2\sqrt{6}} - \frac{2\sqrt{10}}{2\sqrt{6}} - \frac{2\sqrt{15}}{2\sqrt{6}}

Simplify each term:

  1. 1026=56=566\frac{10}{2\sqrt{6}} = \frac{5}{\sqrt{6}} = \frac{5\sqrt{6}}{6} (rationalizing the denominator),
  2. 2626=1\frac{2\sqrt{6}}{2\sqrt{6}} = 1,
  3. 21026=106=606=2156=153\frac{2\sqrt{10}}{2\sqrt{6}} = \frac{\sqrt{10}}{\sqrt{6}} = \frac{\sqrt{60}}{6} = \frac{2\sqrt{15}}{6} = \frac{\sqrt{15}}{3},
  4. 21526=156=906=3106=102\frac{2\sqrt{15}}{2\sqrt{6}} = \frac{\sqrt{15}}{\sqrt{6}} = \frac{\sqrt{90}}{6} = \frac{3\sqrt{10}}{6} = \frac{\sqrt{10}}{2}.

Step 6: Combine terms

The final result is:

566+1153102\frac{5\sqrt{6}}{6} + 1 - \frac{\sqrt{15}}{3} - \frac{\sqrt{10}}{2}


Let me know if you would like further clarification or to simplify this result even further!


Here are 5 related questions for practice:

  1. How do you rationalize the denominator of a fraction involving square roots?
  2. What is the formula for expanding (a+bc)2(a + b - c)^2?
  3. Can you prove the difference of squares formula for radicals?
  4. How would you simplify a+bc\frac{\sqrt{a} + \sqrt{b}}{\sqrt{c}}?
  5. How can the concept of conjugates be applied to simplify irrational denominators?

Tip: When simplifying square root expressions, always try to rationalize denominators to make the final result cleaner and more interpretable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Radical Expressions
Rationalization

Formulas

Difference of squares: \((a + b)(a - b) = a^2 - b^2\)
Expansion of squares: \((a + b - c)^2\)

Theorems

Properties of radicals and square roots
Rationalization of denominators

Suitable Grade Level

Grade 10-12