Math Problem Statement

Its 5 and 3 not 15 not 13

Rationalize the denominator of \(\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\).

Solution

The question asks to rationalize the denominator of the expression 5+353\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}.

Solution:

To rationalize the denominator, multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of 53\sqrt{5} - \sqrt{3} is 5+3\sqrt{5} + \sqrt{3}.

So, we multiply the fraction by 5+35+3\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}:

5+353×5+35+3=(5+3)2(5)2(3)2\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{(\sqrt{5} + \sqrt{3})^2}{(\sqrt{5})^2 - (\sqrt{3})^2}

Step 1: Simplify the numerator

(5+3)2=(5)2+2(5)(3)+(3)2=5+215+3=8+215(\sqrt{5} + \sqrt{3})^2 = (\sqrt{5})^2 + 2(\sqrt{5})(\sqrt{3}) + (\sqrt{3})^2 = 5 + 2\sqrt{15} + 3 = 8 + 2\sqrt{15}

Step 2: Simplify the denominator

(5)2(3)2=53=2(\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2

Step 3: Combine the results

8+2152\frac{8 + 2\sqrt{15}}{2}

Step 4: Simplify the fraction

=82+2152=4+15= \frac{8}{2} + \frac{2\sqrt{15}}{2} = 4 + \sqrt{15}

So, the rationalized expression is 4+154 + \sqrt{15}.

Would you like any more details or have any other questions?

Here are five related questions for further practice:

  1. Rationalize the denominator of 7+272\frac{\sqrt{7} + \sqrt{2}}{\sqrt{7} - \sqrt{2}}.
  2. Simplify 32+23223\frac{3\sqrt{2} + 2\sqrt{3}}{2\sqrt{2} - \sqrt{3}}.
  3. Rationalize the denominator and simplify 1+551\frac{1 + \sqrt{5}}{\sqrt{5} - 1}.
  4. Find the value of 6+262\frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} - \sqrt{2}}.
  5. Simplify 53+232\frac{5\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}.

Tip: When rationalizing denominators, always remember to multiply by the conjugate of the denominator, which changes the sign between the two terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Rationalization
Algebra
Simplification of Radicals

Formulas

Multiplication by the conjugate: \( \frac{a+b}{a-b} \times \frac{a+b}{a+b} \)
Simplifying radicals: \( \sqrt{a} \times \sqrt{a} = a \)

Theorems

Difference of squares: \( (a-b)(a+b) = a^2 - b^2 \)

Suitable Grade Level

Grades 9-10