Math Problem Statement

simplify (R(v)*a)^T (R(u)*b) + (R(v)*c)^T (R(u)*d + (R(u)*e x p))

Solution

To simplify (R(v)a)T(R(u)b)+(R(v)c)T(R(u)d+(R(u)e)×p)(R(v) \cdot a)^T (R(u) \cdot b) + (R(v) \cdot c)^T (R(u) \cdot d + (R(u) \cdot e) \times p), we need to use properties of matrix transposition, matrix-vector multiplication, and the cross product.

Given that R(v)R(v) and R(u)R(u) are rotation matrices, we have the following properties:

  1. (R(v)x)T=xTR(v)T(R(v) \cdot x)^T = x^T \cdot R(v)^T
  2. R(v)T=R(v)R(v)^T = R(-v) (the transpose of a rotation matrix is the rotation matrix of the negative angle).

Let's simplify each term step by step:

Term 1: (R(v)a)T(R(u)b)(R(v) \cdot a)^T (R(u) \cdot b)

  1. Use the property (R(v)a)T=aTR(v)T(R(v) \cdot a)^T = a^T \cdot R(v)^T: (R(v)a)T(R(u)b)=(aTR(v)T)(R(u)b)(R(v) \cdot a)^T (R(u) \cdot b) = (a^T \cdot R(v)^T) (R(u) \cdot b)
  2. Substitute R(v)T=R(v)R(v)^T = R(-v): (aTR(v))(R(u)b)(a^T \cdot R(-v)) (R(u) \cdot b)
  3. Recognize that R(v)R(u)R(-v) R(u) is a composition of rotations: aT(R(v)R(u))ba^T (R(-v) R(u)) b

Term 2: (R(v)c)T(R(u)d+(R(u)e)×p)(R(v) \cdot c)^T (R(u) \cdot d + (R(u) \cdot e) \times p)

  1. Use the property (R(v)c)T=cTR(v)T(R(v) \cdot c)^T = c^T \cdot R(v)^T: (R(v)c)T(R(u)d+(R(u)e)×p)=(cTR(v)T)(R(u)d+(R(u)e)×p)(R(v) \cdot c)^T (R(u) \cdot d + (R(u) \cdot e) \times p) = (c^T \cdot R(v)^T) (R(u) \cdot d + (R(u) \cdot e) \times p)
  2. Distribute cTR(v)Tc^T \cdot R(v)^T: cTR(v)TR(u)d+cTR(v)T(R(u)e)×pc^T \cdot R(v)^T \cdot R(u) \cdot d + c^T \cdot R(v)^T \cdot (R(u) \cdot e) \times p
  3. Substitute R(v)T=R(v)R(v)^T = R(-v): cTR(v)R(u)d+cTR(v)(R(u)e)×pc^T \cdot R(-v) \cdot R(u) \cdot d + c^T \cdot R(-v) \cdot (R(u) \cdot e) \times p
  4. Recognize that R(v)R(u)R(-v) R(u) is a composition of rotations: cT(R(v)R(u))d+cT(R(v)R(u)e)×pc^T (R(-v) R(u)) d + c^T (R(-v) R(u) e) \times p

Combining the simplified terms, we get: aT(R(v)R(u))b+cT(R(v)R(u))d+cT(R(v)R(u)e)×pa^T (R(-v) R(u)) b + c^T (R(-v) R(u)) d + c^T (R(-v) R(u) e) \times p

Thus, the simplified expression is: aT(R(v)R(u))b+cT(R(v)R(u))d+cT(R(v)R(u)e)×pa^T (R(-v) R(u)) b + c^T (R(-v) R(u)) d + c^T (R(-v) R(u) e) \times p

Would you like further details or have any questions?

Here are some related questions to expand your understanding:

  1. What properties do rotation matrices possess?
  2. How does matrix transposition interact with matrix multiplication?
  3. What is the geometric interpretation of the dot product?
  4. How do you represent the composition of two rotations?
  5. What are the steps to simplify expressions involving cross products?
  6. How does the cross product distribute over addition?
  7. What are some applications of rotation matrices in physics?
  8. How can the properties of rotation matrices be used in computer graphics?

Tip: When working with rotation matrices, always remember that they preserve the lengths of vectors and the angles between them.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Transposition
Matrix-Vector Multiplication
Cross Product
Rotation Matrices
Composition of Rotations

Formulas

-

Theorems

Properties of Rotation Matrices
Properties of Matrix Transposition

Suitable Grade Level

Advanced Mathematics