Math Problem Statement

sederhanakan dengan menggunakan hukum logika

Sederhanakan dengan menggunakan hukum logika.

Solution

Let's work through simplifying these logical expressions using the rules of logic step by step.

(a) p(p(pq))pp \lor (p \land (p \lor q)) \equiv p

  1. Apply Absorption Law: p(pq)pp \lor (p \land q) \equiv p This simplifies the inner expression: p(p(pq))pppp \lor (p \land (p \lor q)) \equiv p \lor p \equiv p Therefore, the simplified form is: ppp \equiv p

(b) ¬((pq)r)¬qqr\neg((p \lor q) \land r) \lor \neg q \equiv q \land r

  1. Apply De Morgan's Law on the negation: ¬((pq)r)¬(pq)¬r(¬p¬q)¬r\neg((p \lor q) \land r) \equiv \neg(p \lor q) \lor \neg r \equiv (\neg p \land \neg q) \lor \neg r The full expression becomes: (¬p¬q)¬r¬q¬p¬r¬q(\neg p \land \neg q) \lor \neg r \lor \neg q \equiv \neg p \lor \neg r \lor \neg q

  2. Now compare both sides, but we can’t simplify it directly to qrq \land r by basic logic laws alone. We’ll need additional steps (such as truth tables) to verify equivalence for this expression.

(c) pq(¬p¬qr)pqrp \lor q \lor (\neg p \land \neg q \land r) \equiv p \lor q \lor r

  1. Distribute the first part using Distributive Law: (pq)(¬p¬qr)(p \lor q) \lor (\neg p \land \neg q \land r)
  2. Apply Absorption Law to simplify: pqrp \lor q \lor r Therefore, the simplified form is: pqrp \lor q \lor r

(d) (¬(pq)(pqr))pq(\neg(p \lor q) \Rightarrow (p \land q \land r)) \equiv p \land q

  1. Express the implication using the Implication Law: \equiv (p \lor q) \lor (p \land q \land r)$$
  2. Apply Absorption Law: (pq)pq(p \lor q) \equiv p \land q Therefore, the simplified form is: pqp \land q

These are the simplified results using logical laws. Would you like further clarifications or details on any step?

Here are 5 related questions:

  1. Can you list the basic logical equivalence laws?
  2. How can De Morgan's laws simplify complex expressions?
  3. Why does absorption simplify p(pq)p \lor (p \land q) to pp?
  4. What is the difference between logical implication and biconditional?
  5. How can truth tables verify logical equivalences?

Tip: When simplifying logical expressions, always start by identifying which laws (like De Morgan's or distribution) directly apply to inner expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Boolean Algebra

Formulas

Absorption Law: p ∨ (p ∧ q) ≡ p
De Morgan's Law: ¬(p ∧ q) ≡ ¬p ∨ ¬q
Distributive Law: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Implication Law: p ⇒ q ≡ ¬p ∨ q

Theorems

De Morgan's Theorem
Absorption Theorem
Distributive Theorem
Implication Theorem

Suitable Grade Level

College or Advanced High School (Grades 11-12)