Math Problem Statement

Modul3.pdf

58.63 KB

kerjakan dan buat rangkaian dan tabel kebenaran

Solution

The document provided is a guide for simplifying logic circuits using Boolean algebra. It also includes tasks involving circuit creation and truth table construction. Let's work on simplifying the Boolean equations and constructing the truth tables.

Task 1:

Simplify and create a truth table for the Boolean expression: X=(A+B+AC)(A+C)X = (A + B + A' \cdot C) \cdot (A + C)

Simplification:

  1. Expand the expression using distribution: X=(A+B+AC)(A+C)X = (A + B + A' \cdot C) \cdot (A + C) Applying distribution: X=(AA+AC)+(BA+BC)+(ACA+ACC)X = (A \cdot A + A \cdot C) + (B \cdot A + B \cdot C) + (A' \cdot C \cdot A + A' \cdot C \cdot C)

  2. Simplify terms using Boolean rules:

    • AA=AA \cdot A = A
    • ACA=0A' \cdot C \cdot A = 0 (since AA=0A \cdot A' = 0)
    • ACC=ACA' \cdot C \cdot C = A' \cdot C

    The simplified equation becomes: X=A+AC+BA+BC+ACX = A + A \cdot C + B \cdot A + B \cdot C + A' \cdot C

  3. Applying absorption laws and further simplifications:

    • A+AC=AA + A \cdot C = A (absorption law)
    • BA+A=AB \cdot A + A = A

    So the final simplified expression is: X=A+BC+ACX = A + B \cdot C + A' \cdot C

Truth Table:

We will now construct the truth table for the simplified expression X=A+BC+ACX = A + B \cdot C + A' \cdot C.

ABCB · CA'A' · CX
0000100
0010111
0100100
0111111
1000001
1010001
1100001
1111001

Task 2:

Simplify and create a truth table for the Boolean expression: X=(AB+D)(C+AD)X = (A \cdot B + D) \cdot (C + A \cdot D)

Simplification:

  1. Expand the expression using distribution: X=(AB+D)(C+AD)X = (A \cdot B + D) \cdot (C + A \cdot D) Applying distribution: X=(ABC)+(ABAD)+(DC)+(DAD)X = (A \cdot B \cdot C) + (A \cdot B \cdot A \cdot D) + (D \cdot C) + (D \cdot A \cdot D)

  2. Simplify terms using Boolean rules:

    • ABA=ABA \cdot B \cdot A = A \cdot B
    • DAD=DAD \cdot A \cdot D = D \cdot A

    The simplified equation becomes: X=ABC+ABD+DC+DAX = A \cdot B \cdot C + A \cdot B \cdot D + D \cdot C + D \cdot A

  3. Applying absorption laws:

    • ABD+DA=DAA \cdot B \cdot D + D \cdot A = D \cdot A (absorption)

    So the final simplified expression is: X=ABC+DC+DAX = A \cdot B \cdot C + D \cdot C + D \cdot A

Truth Table:

We will now construct the truth table for the simplified expression X=ABC+DC+DAX = A \cdot B \cdot C + D \cdot C + D \cdot A.

ABCDA · B · CD · CD · AX
00000000
00010000
00100000
00110101
01000000
01010000
01100000
01110101
10000000
10010011
1010000

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Boolean Algebra
Logic Circuits

Formulas

X = (A + B + A' · C) · (A + C)
X = A · B + D · C + D · A

Theorems

De Morgan's Law
Distributive Property
Absorption Law

Suitable Grade Level

College level, Electronics or Digital Logic