Math Problem Statement

Simplify the logarithmic expression: y = ln(sqrt(x^2 + 4 - x^2) / sqrt(x^2 + 4 + x^2))

Solution

The given expression is:

y=ln(x2+4x2x2+4+x2)y = \ln \left( \frac{\sqrt{x^2 + 4 - x^2}}{\sqrt{x^2 + 4 + x^2}} \right)

Step-by-step simplification:

  1. Simplify the square roots:

    • The numerator is x2+4x2\sqrt{x^2 + 4 - x^2}: Simplify x2x2=0x^2 - x^2 = 0, so the numerator becomes 4=2\sqrt{4} = 2.
    • The denominator is x2+4+x2\sqrt{x^2 + 4 + x^2}: Simplify x2+x2=2x2x^2 + x^2 = 2x^2, so the denominator becomes 2x2+4\sqrt{2x^2 + 4}.

    Thus, the expression becomes: y=ln(22x2+4)y = \ln \left( \frac{2}{\sqrt{2x^2 + 4}} \right)

  2. Factorize the denominator: In 2x2+4\sqrt{2x^2 + 4}, factor out 2 from the square root: 2x2+4=2(x2+2)=2x2+2\sqrt{2x^2 + 4} = \sqrt{2(x^2 + 2)} = \sqrt{2} \cdot \sqrt{x^2 + 2} Substituting this back, the expression becomes: y=ln(22x2+2)y = \ln \left( \frac{2}{\sqrt{2} \cdot \sqrt{x^2 + 2}} \right)

  3. Simplify further: The fraction simplifies as: 22x2+2=221x2+2\frac{2}{\sqrt{2} \cdot \sqrt{x^2 + 2}} = \frac{2}{\sqrt{2}} \cdot \frac{1}{\sqrt{x^2 + 2}} Simplify 22=2\frac{2}{\sqrt{2}} = \sqrt{2}, so: y=ln(2x2+2)y = \ln \left( \frac{\sqrt{2}}{\sqrt{x^2 + 2}} \right)

  4. Separate the logarithms: Using the logarithmic property ln(ab)=ln(a)ln(b)\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b), split the expression: y=ln(2)ln(x2+2)y = \ln(\sqrt{2}) - \ln(\sqrt{x^2 + 2}) Simplify further: ln(2)=12ln(2),ln(x2+2)=12ln(x2+2)\ln(\sqrt{2}) = \frac{1}{2} \ln(2), \quad \ln(\sqrt{x^2 + 2}) = \frac{1}{2} \ln(x^2 + 2) Thus: y=12ln(2)12ln(x2+2)y = \frac{1}{2} \ln(2) - \frac{1}{2} \ln(x^2 + 2)

Final Answer:

y=12ln(2)12ln(x2+2)y = \frac{1}{2} \ln(2) - \frac{1}{2} \ln(x^2 + 2)


Would you like a deeper explanation of any step?

Related Questions:

  1. How do you simplify logarithmic expressions involving fractions?
  2. What are common logarithmic properties used in simplification?
  3. How can ln(a)ln(b)\ln(a) - \ln(b) be combined into one expression?
  4. Why does ln(a)\ln(\sqrt{a}) equal 12ln(a)\frac{1}{2} \ln(a)?
  5. What are the applications of logarithms in real-world problems?

Tip:

When simplifying square roots, always check if factoring can make the expression cleaner before substituting values back into the equation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Square Roots
Simplification
Properties of Logarithms

Formulas

ln(a/b) = ln(a) - ln(b)
sqrt(a) = a^(1/2)
ln(sqrt(a)) = (1/2)ln(a)

Theorems

Logarithmic Properties
Square Root Simplification

Suitable Grade Level

Grades 11-12 or College