Math Problem Statement

Simplify \( \ln\left(\frac{3e^2}{e^{-3}}\right) + \ln\left(\frac{4e^{-1}}{e^{-4}}\right) \) and choose the correct option.

Solution

To simplify the expression

ln(3e2e3)+ln(4e1e4),\ln\left(\frac{3e^2}{e^{-3}}\right) + \ln\left(\frac{4e^{-1}}{e^{-4}}\right),

we can start by breaking it down into smaller parts using properties of logarithms. Here are the steps:

Step 1: Simplify each logarithmic term separately

We have two terms:

  1. ln(3e2e3)\ln\left(\frac{3e^2}{e^{-3}}\right)
  2. ln(4e1e4)\ln\left(\frac{4e^{-1}}{e^{-4}}\right)

Term 1: Simplify ln(3e2e3)\ln\left(\frac{3e^2}{e^{-3}}\right)

Using the property of logarithms, ln(ab)=ln(a)ln(b)\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b): ln(3e2e3)=ln(3e2)ln(e3).\ln\left(\frac{3e^2}{e^{-3}}\right) = \ln(3e^2) - \ln(e^{-3}). Now, apply the property ln(ab)=ln(a)+ln(b)\ln(ab) = \ln(a) + \ln(b): =ln(3)+ln(e2)ln(e3).= \ln(3) + \ln(e^2) - \ln(e^{-3}). Since ln(ex)=x\ln(e^x) = x, we get: =ln(3)+2+3=ln(3)+5.= \ln(3) + 2 + 3 = \ln(3) + 5.

Term 2: Simplify ln(4e1e4)\ln\left(\frac{4e^{-1}}{e^{-4}}\right)

Similarly, using the same logarithmic properties: ln(4e1e4)=ln(4e1)ln(e4).\ln\left(\frac{4e^{-1}}{e^{-4}}\right) = \ln(4e^{-1}) - \ln(e^{-4}). Expanding ln(4e1)\ln(4e^{-1}) as ln(4)+ln(e1)\ln(4) + \ln(e^{-1}): =ln(4)1+4=ln(4)+3.= \ln(4) - 1 + 4 = \ln(4) + 3.

Step 2: Combine the simplified terms

Now, we have: ln(3e2e3)+ln(4e1e4)=(ln(3)+5)+(ln(4)+3).\ln\left(\frac{3e^2}{e^{-3}}\right) + \ln\left(\frac{4e^{-1}}{e^{-4}}\right) = (\ln(3) + 5) + (\ln(4) + 3). Simplify by adding the constants: =ln(3)+ln(4)+8.= \ln(3) + \ln(4) + 8. Using the property ln(a)+ln(b)=ln(ab)\ln(a) + \ln(b) = \ln(ab), we combine ln(3)+ln(4)\ln(3) + \ln(4) into ln(12)\ln(12): =ln(12)+8.= \ln(12) + 8.

Final Answer

The correct answer is: (c) ln(12)+8.\boxed{\text{(c) } \ln(12) + 8}.

Would you like a further breakdown of any steps?


Here are five related questions to deepen understanding:

  1. How do the properties of logarithms help simplify complex expressions?
  2. Can you expand and simplify ln(6e32e2)\ln\left(\frac{6e^3}{2e^{-2}}\right)?
  3. What happens to the logarithmic expression if the base is not ee?
  4. How would you handle expressions involving ln(x2+y2)\ln(x^2 + y^2)?
  5. How do logarithmic properties apply to division and multiplication inside the log function?

Tip: Remember, logarithmic properties are powerful tools for simplifying expressions—mastering them can make complex expressions more manageable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Properties
Simplification of Logarithmic Expressions

Formulas

\( \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b) \)
\( \ln(a) + \ln(b) = \ln(ab) \)
\( \ln(e^x) = x \)

Theorems

Properties of Logarithms

Suitable Grade Level

Grade 11-12