Math Problem Statement

vereinfache

Solution

Let's simplify the given expression step by step.

The expression is:

(4x5y4n)2(y24x2)3(5x2n(xy)4)2\frac{\left(\frac{4x^5}{y^{4n}}\right)^2 \left(\frac{y^{-2}}{4x^2}\right)^3}{\left(\frac{5x^{2n}}{(xy)^4}\right)^2}

Step 1: Simplify each part individually

1. (4x5y4n)2\left(\frac{4x^5}{y^{4n}}\right)^2

(4x5y4n)2=(42)(x52)(y4n)2=16x10y8n\left(\frac{4x^5}{y^{4n}}\right)^2 = \frac{(4^2)(x^{5 \cdot 2})}{(y^{4n})^2} = \frac{16x^{10}}{y^{8n}}

2. (y24x2)3\left(\frac{y^{-2}}{4x^2}\right)^3

(y24x2)3=(y2)3(4x2)3=y664x6\left(\frac{y^{-2}}{4x^2}\right)^3 = \frac{(y^{-2})^3}{(4x^2)^3} = \frac{y^{-6}}{64x^6}

3. (5x2n(xy)4)2\left(\frac{5x^{2n}}{(xy)^4}\right)^2

(5x2n(xy)4)2=(52)(x2n2)(xy)8=25x4nx8y8=25x4n8y8\left(\frac{5x^{2n}}{(xy)^4}\right)^2 = \frac{(5^2)(x^{2n \cdot 2})}{(xy)^8} = \frac{25x^{4n}}{x^8y^8} = \frac{25x^{4n-8}}{y^8}

Step 2: Multiply the simplified numerators

16x10y8n×y664x6=16x10y664x6y8n=x106y68n64=x4y68n64\frac{16x^{10}}{y^{8n}} \times \frac{y^{-6}}{64x^6} = \frac{16x^{10}y^{-6}}{64x^6y^{8n}} = \frac{x^{10-6}y^{-6-8n}}{64} = \frac{x^4y^{-6-8n}}{64}

Step 3: Combine the entire expression

Now, put this over the denominator:

x4y68n6425x4n8y8=x4y68ny86425x4n8=x4+84ny68n+81600=x124ny28n1600\frac{\frac{x^4y^{-6-8n}}{64}}{\frac{25x^{4n-8}}{y^8}} = \frac{x^4y^{-6-8n} \cdot y^8}{64 \cdot 25x^{4n-8}} = \frac{x^{4+8-4n}y^{-6-8n+8}}{1600} = \frac{x^{12-4n}y^{2-8n}}{1600}

Final Simplified Expression

The simplified expression is:

x124ny28n1600\frac{x^{12-4n}y^{2-8n}}{1600}

Would you like more details on this simplification process, or do you have any other questions?

Related Questions:

  1. What happens if n=0n = 0 in the final expression?
  2. How would the expression change if the exponents were not integers?
  3. How do you handle negative exponents in a complex fraction?
  4. How can the expression be interpreted for large values of nn?
  5. What is the significance of simplifying such algebraic expressions?

Tip:

Always simplify expressions inside parentheses first before raising them to any power; it makes the calculation much easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Exponentiation
Fraction Simplification

Formulas

Power rule for exponents
Fractional exponent rules

Theorems

-

Suitable Grade Level

Advanced High School