Math Problem Statement

solve it the easiest n fastest way I don’t understand it explain it

solve it the easiest n fastest way I don’t understand it explain it

Solution

Let's go through each problem step-by-step. I’ll make it as simple and quick as possible.


Problem #10:

Simplify 9x2y5\sqrt{9x^2y^5}

  1. Separate the square root: 9x2y5=9x2y5\sqrt{9x^2y^5} = \sqrt{9} \cdot \sqrt{x^2} \cdot \sqrt{y^5}

  2. Simplify each term:

    • 9=3\sqrt{9} = 3
    • x2=x\sqrt{x^2} = x
    • For y5\sqrt{y^5}, write y5y^5 as y4yy^4 \cdot y: y5=y4y=y2y\sqrt{y^5} = \sqrt{y^4} \cdot \sqrt{y} = y^2 \sqrt{y}
  3. Combine everything: 9x2y5=3xy2y=3xy2y\sqrt{9x^2y^5} = 3x \cdot y^2 \sqrt{y} = 3x y^2 \sqrt{y}

Answer: 3xy2y3x y^2 \sqrt{y}


Problem #12:

Simplify 32a4b7\sqrt{32a^4b^7}

  1. Separate terms: 32a4b7=32a4b7\sqrt{32a^4b^7} = \sqrt{32} \cdot \sqrt{a^4} \cdot \sqrt{b^7}

  2. Simplify each term:

    • 32=42\sqrt{32} = 4\sqrt{2} because 32=16×232 = 16 \times 2 and 16=4\sqrt{16} = 4.
    • a4=a2\sqrt{a^4} = a^2
    • For b7\sqrt{b^7}, write b7b^7 as b6bb^6 \cdot b: b7=b6b=b3b\sqrt{b^7} = \sqrt{b^6} \cdot \sqrt{b} = b^3 \sqrt{b}
  3. Combine everything: 32a4b7=42a2b3b=4a2b32b\sqrt{32a^4b^7} = 4\sqrt{2} \cdot a^2 \cdot b^3 \sqrt{b} = 4a^2b^3 \sqrt{2b}

Answer: 4a2b32b4a^2b^3 \sqrt{2b}


Problem #16:

Simplify 16a4b53\sqrt[3]{16a^4b^5}

  1. Separate terms: [ \sqrt[3]{16a^4b^5} = \sqrt[3]{16} \cdot \sqrt[3]{a^4} \cdot \sqrt[3]{b^5} ]

  2. Simplify each term:

    • 163=223\sqrt[3]{16} = 2 \sqrt[3]{2} because 16=8×216 = 8 \times 2 and 83=2\sqrt[3]{8} = 2.
    • a43=a4/3\sqrt[3]{a^4} = a^{4/3}
    • b53=b5/3\sqrt[3]{b^5} = b^{5/3}
  3. Combine everything: [ \sqrt[3]{16a^4b^5} = 2a^{4/3}b^{5/3} \sqrt[3]{2} ]

Answer: 2a4/3b5/3232a^{4/3}b^{5/3} \sqrt[3]{2}


Clicker #2:

Simplify 32x2y\sqrt{32x^2y}

  1. Separate terms: 32x2y=32x2y\sqrt{32x^2y} = \sqrt{32} \cdot \sqrt{x^2} \cdot \sqrt{y}

  2. Simplify each term:

    • 32=42\sqrt{32} = 4\sqrt{2}
    • x2=x\sqrt{x^2} = x
    • y=y\sqrt{y} = \sqrt{y}
  3. Combine everything: 32x2y=4x2y\sqrt{32x^2y} = 4x\sqrt{2y}

Answer: c) 4x2y\text{c) } 4x \sqrt{2y}


Would you like more details on any part?

Follow-up Questions:

  1. How do you handle variables with odd exponents under a square root?
  2. What is the difference between square roots and cube roots in simplifying expressions?
  3. How do you identify perfect squares or cubes within an expression?
  4. What are some tips for simplifying expressions with multiple terms under a root?
  5. How does fractional exponent notation relate to roots?

Tip: When simplifying roots, always look to separate constants and variables into terms that are perfect squares (or cubes, etc.) to make simplification easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplifying Radicals
Roots of Whole Numbers and Variables
Square Roots
Cube Roots

Formulas

√(a * b) = √a * √b
√(x^2) = x
√(y^n) where n is odd
Cube root of a product

Theorems

Properties of Square Roots
Properties of Cube Roots
Exponent Laws (Power Rules)

Suitable Grade Level

Grades 9-11