Math Problem Statement

Simplify the given exponential and radical expressions.

Solution

Let's go through the process of simplifying the expressions step by step.

Simplify the Following Exponential

  1. x4x3x^4 \cdot x^3

    Using the law of exponents:
    xmxn=xm+nx^m \cdot x^n = x^{m+n}
    So:
    x4x3=x4+3=x7x^4 \cdot x^3 = x^{4+3} = x^7

  2. (14x2y3)2(14x^2 y^3)^2

    Applying the power of a product rule:
    (ab)n=anbn(ab)^n = a^n b^n
    So:
    (14x2y3)2=142(x2)2(y3)2=196x4y6(14x^2 y^3)^2 = 14^2 \cdot (x^2)^2 \cdot (y^3)^2 = 196x^4 y^6

  3. 12x36x2\frac{12x^3}{6x^2}

    Simplify the coefficients and subtract exponents:
    126=2,x3/x2=x32=x\frac{12}{6} = 2, \quad x^3 / x^2 = x^{3-2} = x
    So:
    12x36x2=2x\frac{12x^3}{6x^2} = 2x

  4. x2x3x^{-2} \cdot x^3

    Using the exponent addition rule:
    x2x3=x2+3=x1=xx^{-2} \cdot x^3 = x^{-2+3} = x^1 = x

  5. (5n2n4)0(5n^2 n^4)^0

    Anything raised to the power of zero equals 1:
    (5n2n4)0=1(5n^2 n^4)^0 = 1

  6. (2x3y2)2\left( \frac{2x^3}{y^{-2}} \right)^{-2}

    First, apply the negative exponent rule:
    (ab)n=bnan\left( \frac{a}{b} \right)^{-n} = \frac{b^n}{a^n}
    Then simplify the result: (2x3y2)2=y44x6\left( \frac{2x^3}{y^{-2}} \right)^{-2} = \frac{y^{4}}{4x^6}

  7. 3x2y3(4xy3)3x^2 y^3 \cdot (-4xy^3)

    Multiply coefficients and add exponents: 3(4)=12,x2x1=x3,y3y3=y63 \cdot (-4) = -12, \quad x^2 \cdot x^1 = x^3, \quad y^3 \cdot y^3 = y^6
    So:
    3x2y3(4xy3)=12x3y63x^2 y^3 \cdot (-4xy^3) = -12x^3 y^6

  8. **

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Exponents
Radicals
Simplification

Formulas

Product of Powers: x^m * x^n = x^(m+n)
Power of a Power: (x^m)^n = x^(m*n)
Quotient of Powers: x^m / x^n = x^(m-n)
Negative Exponent Rule: x^(-n) = 1/x^n
Radical Simplification Rules: √(a * b) = √a * √b, (√a)^n = a^(n/2)

Theorems

Exponent Rules
Properties of Radicals

Suitable Grade Level

Grades 8-10