Math Problem Statement

Simplify fully: \(\frac{(2 \cdot 3^{x+1})^3}{\sqrt[3]{3^{16x} \cdot 12^{3 - 2x}}}\)

Solution

To simplify the given expression, let's start by analyzing it:

(23x+1)3316x1232x3\frac{(2 \cdot 3^{x+1})^3}{\sqrt[3]{3^{16x} \cdot 12^{3 - 2x}}}

Step 1: Expand the Numerator

The numerator is (23x+1)3(2 \cdot 3^{x+1})^3. We can expand this by distributing the exponent: (23x+1)3=23(3x+1)3=833(x+1)=833x+3(2 \cdot 3^{x+1})^3 = 2^3 \cdot (3^{x+1})^3 = 8 \cdot 3^{3(x+1)} = 8 \cdot 3^{3x + 3}

Step 2: Simplify the Denominator

The denominator is the cube root of 316x1232x3^{16x} \cdot 12^{3 - 2x}: 316x1232x3\sqrt[3]{3^{16x} \cdot 12^{3 - 2x}}

Step 2.1: Simplify 1232x12^{3 - 2x}

We know that 12=22312 = 2^2 \cdot 3, so: 1232x=(223)32x=22(32x)332x=264x332x12^{3 - 2x} = (2^2 \cdot 3)^{3 - 2x} = 2^{2(3 - 2x)} \cdot 3^{3 - 2x} = 2^{6 - 4x} \cdot 3^{3 - 2x}

Now we substitute this back into the denominator: 316x264x332x3\sqrt[3]{3^{16x} \cdot 2^{6 - 4x} \cdot 3^{3 - 2x}}

Step 2.2: Combine the 33-Terms in the Denominator

Now we combine the powers of 33 in the denominator: [ \sqrt[3]{3^{16x + 3 - 2x} \cdot 2^{6 - 4x}} = \sqrt[3]{3^{14x + 3} \cdot 2^{6 - 4x}} ]

Step 2.3: Apply the Cube Root

Applying the cube root to each term: 314x+3264x3=314x+33264x3\sqrt[3]{3^{14x + 3} \cdot 2^{6 - 4x}} = 3^{\frac{14x + 3}{3}} \cdot 2^{\frac{6 - 4x}{3}}

Step 3: Write the Expression in Terms of Simplified Powers

We now have: 833x+3314x+33264x3\frac{8 \cdot 3^{3x + 3}}{3^{\frac{14x + 3}{3}} \cdot 2^{\frac{6 - 4x}{3}}}

Step 4: Simplify the Fraction

Separate the powers of 22 and 33:

  1. For 22: 8264x3=2364x3=232+4x3=21+4x3\frac{8}{2^{\frac{6 - 4x}{3}}} = 2^{3 - \frac{6 - 4x}{3}} = 2^{3 - 2 + \frac{4x}{3}} = 2^{1 + \frac{4x}{3}}

  2. For 33: 33x+3314x+33=33x+314x+33\frac{3^{3x + 3}}{3^{\frac{14x + 3}{3}}} = 3^{3x + 3 - \frac{14x + 3}{3}}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Roots and Radicals
Simplifying Algebraic Expressions

Formulas

Power of a product formula: \((ab)^n = a^n \cdot b^n\)
Power rule for exponents: \((a^m)^n = a^{m \cdot n}\)
Cube root simplification: \(\sqrt[3]{a^m} = a^{m/3}\)

Theorems

Laws of Exponents

Suitable Grade Level

Grades 10-12