Math Problem Statement

reduce the equation

reduce the equation

Solution

To simplify this complex expression, let's go through it step-by-step. The expression is:

((25)3(25)4(3)4(5)1(5)5(5)5)5×((5)0(2)5(3)2(3)2(2)4(5)3(5)3)3\left( \frac{(2 \cdot 5)^3 \cdot (2 \cdot 5)^4 \cdot (3)^{-4}}{(5)^{-1} \cdot (5)^{-5} \cdot (5)^{-5}} \right)^{-5} \times \left( \frac{(5)^0 \cdot (2)^{-5} \cdot (3)^{-2} \cdot (3)^{-2}}{(2)^{-4} \cdot (5)^{-3} \cdot (5)^{-3}} \right)^3

Let's simplify each part individually:

  1. Simplify each term inside the parentheses.

For the first expression:

  • The numerator is (25)3(25)4(3)4(2 \cdot 5)^3 \cdot (2 \cdot 5)^4 \cdot (3)^{-4}.

    • Using the property (ab)n=anbn(a \cdot b)^n = a^n \cdot b^n, we can write (25)3=2353(2 \cdot 5)^3 = 2^3 \cdot 5^3 and (25)4=2454(2 \cdot 5)^4 = 2^4 \cdot 5^4.
    • This gives 2353245434=23+453+434=2757342^3 \cdot 5^3 \cdot 2^4 \cdot 5^4 \cdot 3^{-4} = 2^{3+4} \cdot 5^{3+4} \cdot 3^{-4} = 2^7 \cdot 5^7 \cdot 3^{-4}.
  • The denominator is 515555=5155=5115^{-1} \cdot 5^{-5} \cdot 5^{-5} = 5^{-1-5-5} = 5^{-11}.

  • So, the entire fraction becomes: 275734511=2757+1134=2751834\frac{2^7 \cdot 5^7 \cdot 3^{-4}}{5^{-11}} = 2^7 \cdot 5^{7 + 11} \cdot 3^{-4} = 2^7 \cdot 5^{18} \cdot 3^{-4}

  • Raising this to the power of 5-5 gives: (2751834)5=235590320\left(2^7 \cdot 5^{18} \cdot 3^{-4}\right)^{-5} = 2^{-35} \cdot 5^{-90} \cdot 3^{20}

For the second expression:

  • The numerator is (5)0(2)5(3)2(3)2(5)^0 \cdot (2)^{-5} \cdot (3)^{-2} \cdot (3)^{-2}.

    • Simplify to 5025322=25345^0 \cdot 2^{-5} \cdot 3^{-2-2} = 2^{-5} \cdot 3^{-4}.
  • The denominator is (2)4(5)3(5)3=2456(2)^{-4} \cdot (5)^{-3} \cdot (5)^{-3} = 2^{-4} \cdot 5^{-6}.

  • So, the entire fraction becomes: 25342456=25+43456=213456\frac{2^{-5} \cdot 3^{-4}}{2^{-4} \cdot 5^{-6}} = 2^{-5+4} \cdot 3^{-4} \cdot 5^{6} = 2^{-1} \cdot 3^{-4} \cdot 5^{6}

  • Raising this to the power of 33 gives: (213456)3=23312518\left(2^{-1} \cdot 3^{-4} \cdot 5^{6}\right)^3 = 2^{-3} \cdot 3^{-12} \cdot 5^{18}

  1. Combine both parts:

The expression now becomes: 235590320×233125182^{-35} \cdot 5^{-90} \cdot 3^{20} \times 2^{-3} \cdot 3^{-12} \cdot 5^{18}

Combine the exponents for each base:

  • For 22: 353=38-35 - 3 = -38, so we have 2382^{-38}.
  • For 55: 90+18=72-90 + 18 = -72, so we have 5725^{-72}.
  • For 33: 2012=820 - 12 = 8, so we have 383^8.
  1. Final simplified form:

23857238=382385722^{-38} \cdot 5^{-72} \cdot 3^8 = \frac{3^8}{2^{38} \cdot 5^{72}}

This is the fully simplified expression. Let me know if you'd like further clarification on any step.


Would you like details or have any questions?

Related Questions

  1. How do exponent rules apply to expressions with multiple bases?
  2. Can this expression be simplified further if we evaluate the constants?
  3. What is the significance of negative exponents in these expressions?
  4. How do we handle fractions when simplifying expressions with exponents?
  5. Can this technique be applied to logarithmic expressions as well?

Tip

Always keep track of each base separately when applying exponent rules to avoid calculation errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Exponentiation
Simplification of Exponential Expressions

Formulas

(a * b)^n = a^n * b^n
a^m * a^n = a^(m+n)
(a^m) / (a^n) = a^(m-n)
(a^m)^n = a^(m * n)

Theorems

Laws of Exponents

Suitable Grade Level

Grades 10-12