Math Problem Statement
Solution
The expression provided is:
We need to simplify this expression while avoiding negative exponents.
Step-by-step simplification:
-
Apply the outer exponent: Use the property of exponents to distribute the to both and .
-
Simplify the exponents:
- For , the new exponent is:
- For , the new exponent is:
Now the expression becomes:
-
Convert negative exponents: To remove negative exponents, recall that . Thus, we move to the denominator:
Thus, the simplified expression is:
Would you like further details or clarifications?
Here are some related questions you could explore:
- What is the general rule for simplifying expressions with fractional exponents?
- How do you simplify expressions involving negative exponents?
- How do you handle mixed bases in an expression like this one?
- What are some common mistakes when simplifying exponentials?
- How does exponentiation behave under multiplication of terms?
Tip: When simplifying expressions with multiple variables and exponents, always apply the power rules carefully and keep track of signs to avoid mistakes.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Exponents
Simplification
Algebra
Formulas
Exponent rule: (x^m)^n = x^{m \cdot n}
Exponent rule: x^{-n} = \frac{1}{x^n}
Theorems
Power of a product rule
Negative exponent rule
Suitable Grade Level
Grades 9-12