Math Problem Statement

0.98[8698883 (1.187 ^2-1+3.711.187 ^2(ln(1.187 ))/(1379.0 (520.00 -438.000 )(1+1.861.187 ^2))]

Solution

Let's break down and simplify the given expression step by step. The expression is:

0.98[8698883(1.18721+3.711.1872ln(1.187)1379.0(520.00438.000)(1+1.861.1872))]0.98 \left[8698883 \left(1.187^2 - 1 + 3.71 \cdot 1.187^2 \frac{\ln(1.187)}{1379.0 \left(520.00 - 438.000\right) \left(1 + 1.86 \cdot 1.187^2\right)}\right)\right]

First, simplify the constants and smaller expressions:

  1. 1.18721.187^2: 1.1872=1.4091691.187^2 = 1.409169

  2. 520.00438.000520.00 - 438.000: 520.00438.000=82.00520.00 - 438.000 = 82.00

  3. 1.861.18721.86 \cdot 1.187^2: 1.861.409169=2.622428341.86 \cdot 1.409169 = 2.62242834

  4. ln(1.187)\ln(1.187): ln(1.187)0.171850256\ln(1.187) \approx 0.171850256

Next, substitute these simplified values back into the expression:

0.98[8698883(1.4091691+3.711.4091690.1718502561379.082.00(1+2.62242834))]0.98 \left[8698883 \left(1.409169 - 1 + 3.71 \cdot 1.409169 \frac{0.171850256}{1379.0 \cdot 82.00 \left(1 + 2.62242834\right)}\right)\right]

Calculate the denominator:

1379.082.00=113078.01379.0 \cdot 82.00 = 113078.0 1+2.62242834=3.622428341 + 2.62242834 = 3.62242834 113078.03.62242834=409737.85652113078.0 \cdot 3.62242834 = 409737.85652

Now, simplify the fraction:

0.171850256409737.856524.1931×107\frac{0.171850256}{409737.85652} \approx 4.1931 \times 10^{-7}

Calculate the term inside the parentheses:

3.711.4091694.1931×1072.1876×1063.71 \cdot 1.409169 \cdot 4.1931 \times 10^{-7} \approx 2.1876 \times 10^{-6}

Add the terms:

1.4091691+2.1876×1060.40917118761.409169 - 1 + 2.1876 \times 10^{-6} \approx 0.4091711876

Now multiply by 8698883:

86988830.40917118763557781.398698883 \cdot 0.4091711876 \approx 3557781.39

Finally, multiply by 0.98:

0.983557781.393486625.760.98 \cdot 3557781.39 \approx 3486625.76

So, the value of the given expression is approximately 3486625.763486625.76.

Do you want more details or have any questions about this solution?

Here are 5 numbered questions you might ask next:

  1. Can you explain how to calculate logarithms?
  2. How do you simplify complex fractions?
  3. Can you show how to solve similar expressions with different values?
  4. What are some common properties of logarithms?
  5. How do you handle equations with multiple variables?

Tip: When working with complex expressions, breaking them down into smaller parts and solving step by step can make the process easier and help avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponential functions
Logarithms
Complex fractions

Formulas

Exponential function formula
Logarithm properties

Theorems

-

Suitable Grade Level

Advanced High School or College