Math Problem Statement

Solve the given mathematical expressions shown in the image.

Solution

Let's break down and solve the mathematical expressions in the provided image. The expressions are quite complex, so we will analyze and solve each part step by step.

Top Expression:

[ \frac{\log_{100}(10)}{\frac{1}{100}} + \sqrt[3]{\sqrt[3]{14661} \cdot \sqrt{16} \cdot \left(\sqrt{64} + \frac{16}{\sqrt{4}}\right)} ]

Middle Expression:

((log100(10))41216sin(30)cos(60))1+(12)1\left(\frac{\left(\log_{100}(10)\right)^4}{\frac{1}{2} \cdot 16 \cdot \sin(30^\circ) \cdot \cos(60^\circ)}\right)^{-1} + \left(\frac{1}{2}\right)^{-1}

Bottom Expression:

[ \sqrt[3]{\left(0.5\right)^{-1} \cdot \left(\sqrt[7]{(512 \cdot 0.5)^2}\right)^{10}} - 3 \cdot \left(6 \cdot \sin(30^\circ)\right)^3 + \frac{\sqrt[2]{(6 \cdot 0.5)^8}}{\cos(60^\circ)} + \frac{1}{21584 \cdot \cos(60^\circ)} ]

Now, let's start solving each part:

Top Expression:

  1. log100(10)\log_{100}(10):

log100(10)=log10(10)log10(100)=12\log_{100}(10) = \frac{\log_{10}(10)}{\log_{10}(100)} = \frac{1}{2}

  1. 1100\frac{1}{100}:

1100=0.01\frac{1}{100} = 0.01

  1. log100(10)0.01\frac{\log_{100}(10)}{0.01}:

0.50.01=50\frac{0.5}{0.01} = 50

  1. 14661316(64+164)3\sqrt[3]{\sqrt[3]{14661} \cdot \sqrt{16} \cdot \left(\sqrt{64} + \frac{16}{\sqrt{4}}\right)}:
  • 14661324.43\sqrt[3]{14661} \approx 24.43
  • 16=4\sqrt{16} = 4
  • 64=8\sqrt{64} = 8
  • 164=16/2=8\frac{16}{\sqrt{4}} = 16 / 2 = 8
  • 64+8=8+8=16\sqrt{64} + 8 = 8 + 8 = 16

So,

[ \sqrt[3]{24.43 \cdot 4 \cdot 16} = \sqrt[3]{24.43 \cdot 64} \approx \sqrt[3]{1563.52} \approx 11.52 ]

Combining both parts:

50+11.52=61.5250 + 11.52 = 61.52

Middle Expression:

  1. ((log100(10))41216sin(30)cos(60))1\left(\frac{\left(\log_{100}(10)\right)^4}{\frac{1}{2} \cdot 16 \cdot \sin(30^\circ) \cdot \cos(60^\circ)}\right)^{-1}:
  • log100(10)=0.5\log_{100}(10) = 0.5
  • (0.5)4=0.0625(0.5)^4 = 0.0625
  • sin(30)=0.5\sin(30^\circ) = 0.5
  • cos(60)=0.5\cos(60^\circ) = 0.5
  • 12160.50.5=2\frac{1}{2} \cdot 16 \cdot 0.5 \cdot 0.5 = 2

So,

(0.06252)1=(0.03125)1=32\left(\frac{0.0625}{2}\right)^{-1} = \left(0.03125\right)^{-1} = 32

  1. (12)1\left(\frac{1}{2}\right)^{-1}:

(12)1=2\left(\frac{1}{2}\right)^{-1} = 2

Combining both parts:

32+2=3432 + 2 = 34

Bottom Expression:

  1. (\sqrt[3]{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Exponents
Roots
Trigonometry
Inverse Operations

Formulas

logarithmic change of base: log_a(b) = log_c(b) / log_c(a)
exponentiation: a^(-n) = 1 / (a^n)
root calculation: n√(a) = a^(1/n)
trigonometric identities for sin and cos

Theorems

Properties of logarithms
Exponent and root properties
Basic trigonometric identities

Suitable Grade Level

Grades 10-12