Math Problem Statement

Solution

The problem presented in the image involves simplifying and evaluating a mathematical expression QQ. The given expression is:

Q=(1x11x+1)(1x+1+2x1)Q = \left(\frac{1}{\sqrt{x-1}} - \frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x+1}} + \frac{2}{\sqrt{x-1}}\right)

Part (a): Simplify the Expression QQ

To simplify QQ, let's expand the expression by multiplying the two terms together:

Q=(1x11x+1)(1x+1+2x1)Q = \left(\frac{1}{\sqrt{x-1}} - \frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x+1}} + \frac{2}{\sqrt{x-1}}\right)

This can be expanded using the distributive property:

Q=1x11x+1+1x12x11x+11x+11x+12x1Q = \frac{1}{\sqrt{x-1}} \cdot \frac{1}{\sqrt{x+1}} + \frac{1}{\sqrt{x-1}} \cdot \frac{2}{\sqrt{x-1}} - \frac{1}{\sqrt{x+1}} \cdot \frac{1}{\sqrt{x+1}} - \frac{1}{\sqrt{x+1}} \cdot \frac{2}{\sqrt{x-1}}

Simplifying each term:

  1. 1x11x+1=1(x1)(x+1)=1x21\frac{1}{\sqrt{x-1}} \cdot \frac{1}{\sqrt{x+1}} = \frac{1}{\sqrt{(x-1)(x+1)}} = \frac{1}{\sqrt{x^2-1}}
  2. 1x12x1=2x1\frac{1}{\sqrt{x-1}} \cdot \frac{2}{\sqrt{x-1}} = \frac{2}{x-1}
  3. 1x+11x+1=1x+1\frac{1}{\sqrt{x+1}} \cdot \frac{1}{\sqrt{x+1}} = \frac{1}{x+1}
  4. (\frac{1

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Expressions
Square Roots

Formulas

Distributive Property

Theorems

-

Suitable Grade Level

High School