Math Problem Statement

Using a double-angle or half-angle formula to simplify the expressions: (a) If cos²(33°) - sin²(33°) = cos(A°), find A in degrees. (b) If cos²(7x) - sin²(7x) = cos(B), find B.

Solution

Let's solve the problems shown in the image step by step.

Problem (a):

We are given: cos2(33)sin2(33)=cos(A)\cos^2(33^\circ) - \sin^2(33^\circ) = \cos(A^\circ)

Solution:

Using the cosine double-angle formula: cos(2θ)=cos2(θ)sin2(θ)\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)

Here, θ=33\theta = 33^\circ. Thus: cos2(33)sin2(33)=cos(233)\cos^2(33^\circ) - \sin^2(33^\circ) = \cos(2 \cdot 33^\circ)

Simplify: cos(233)=cos(66)\cos(2 \cdot 33^\circ) = \cos(66^\circ)

So: A=66A = 66

Final Answer for (a):

A=66A = 66^\circ


Problem (b):

We are given: cos2(7x)sin2(7x)=cos(B)\cos^2(7x) - \sin^2(7x) = \cos(B)

Solution:

Again using the cosine double-angle formula: cos(2θ)=cos2(θ)sin2(θ)\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)

Here, θ=7x\theta = 7x. Thus: cos2(7x)sin2(7x)=cos(27x)\cos^2(7x) - \sin^2(7x) = \cos(2 \cdot 7x)

Simplify: cos(27x)=cos(14x)\cos(2 \cdot 7x) = \cos(14x)

So: B=14xB = 14x

Final Answer for (b):

B=14xB = 14x


Summary:

  • (a) A=66A = 66^\circ
  • (b) B=14xB = 14x

Would you like more details or examples on similar problems?


Related Questions:

  1. What are the other trigonometric double-angle formulas?
  2. How do you derive the double-angle formulas from basic trigonometric identities?
  3. What happens when using half-angle formulas instead of double-angle formulas?
  4. How does the identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 connect with this?
  5. Can this identity be applied to non-angles (e.g., expressions with xx)?

Tip:

When solving problems with cos2\cos^2 and sin2\sin^2, check if double-angle formulas or the Pythagorean identity simplify the expression.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Identities
Double-Angle Formula
Simplification

Formulas

cos(2θ) = cos²(θ) - sin²(θ)

Theorems

Trigonometric Double-Angle Theorem

Suitable Grade Level

Grades 10-12