Math Problem Statement

simplify (a/4 - b/6)^3 + (a/4 + b/6)^3

Solution

We are asked to simplify the expression:

(a4b6)3+(a4+b6)3\left(\frac{a}{4} - \frac{b}{6}\right)^3 + \left(\frac{a}{4} + \frac{b}{6}\right)^3

This is a sum of cubes of binomials. We can apply the identity for the sum of cubes:

x3+y3=(x+y)(x2xy+y2)x^3 + y^3 = (x + y)(x^2 - xy + y^2)

Let: x=a4b6andy=a4+b6x = \frac{a}{4} - \frac{b}{6} \quad \text{and} \quad y = \frac{a}{4} + \frac{b}{6}

We now apply the identity:

[ x^3 + y^3 = \left[\left(\frac{a}{4} - \frac{b}{6}\right) + \left(\frac{a}{4} + \frac{b}{6}\right)\right] \left[\left(\frac{a}{4} - \frac{b}{6}\right)^2 - \left(\frac{a}{4} - \frac{b}{6}\right)\left(\frac{a}{4} + \frac{b}{6}\right) + \left(\frac{a}{4} + \frac{b}{6}\right)^2\right] ]

Step 1: Simplifying the sum x+yx + y

(a4b6)+(a4+b6)=a4+a4=2a4=a2\left(\frac{a}{4} - \frac{b}{6}\right) + \left(\frac{a}{4} + \frac{b}{6}\right) = \frac{a}{4} + \frac{a}{4} = \frac{2a}{4} = \frac{a}{2}

Step 2: Simplifying the second factor

We will now simplify the second factor:

  1. (a4b6)2\left(\frac{a}{4} - \frac{b}{6}\right)^2 =(a4)22a4b6+(b6)2=a216ab12+b236= \left(\frac{a}{4}\right)^2 - 2 \cdot \frac{a}{4} \cdot \frac{b}{6} + \left(\frac{b}{6}\right)^2 = \frac{a^2}{16} - \frac{ab}{12} + \frac{b^2}{36}

  2. (a4b6)(a4+b6)\left(\frac{a}{4} - \frac{b}{6}\right)\left(\frac{a}{4} + \frac{b}{6}\right) =(a4)2(b6)2=a216b236= \left(\frac{a}{4}\right)^2 - \left(\frac{b}{6}\right)^2 = \frac{a^2}{16} - \frac{b^2}{36}

  3. (a4+b6)2\left(\frac{a}{4} + \frac{b}{6}\right)^2 =(a4)2+2a4b6+(b6)2=a216+ab12+b236= \left(\frac{a}{4}\right)^2 + 2 \cdot \frac{a}{4} \cdot \frac{b}{6} + \left(\frac{b}{6}\right)^2 = \frac{a^2}{16} + \frac{ab}{12} + \frac{b^2}{36}

Step 3: Putting it all together

Now we combine everything into the full expression:

x3+y3=a2[a216ab12+b236(a216b236)+a216+ab12+b236]x^3 + y^3 = \frac{a}{2} \left[ \frac{a^2}{16} - \frac{ab}{12} + \frac{b^2}{36} - \left(\frac{a^2}{16} - \frac{b^2}{36}\right) + \frac{a^2}{16} + \frac{ab}{12} + \frac{b^2}{36} \right]

Simplify the terms inside the bracket:

  • The abab terms cancel out.
  • Combine the a2a^2 terms: a216+a216a216=a216\frac{a^2}{16} + \frac{a^2}{16} - \frac{a^2}{16} = \frac{a^2}{16}
  • Combine the b2b^2 terms: b236+b236b236=b236\frac{b^2}{36} + \frac{b^2}{36} - \frac{b^2}{36} = \frac{b^2}{36}

Thus, the expression simplifies to:

x3+y3=a2(a216+b236)x^3 + y^3 = \frac{a}{2} \left( \frac{a^2}{16} + \frac{b^2}{36} \right)

Finally, distribute the a2\frac{a}{2}:

=a2a216+a2b236=a332+ab272= \frac{a}{2} \cdot \frac{a^2}{16} + \frac{a}{2} \cdot \frac{b^2}{36} = \frac{a^3}{32} + \frac{ab^2}{72}

Final simplified expression:

(a4b6)3+(a4+b6)3=a332+ab272\left(\frac{a}{4} - \frac{b}{6}\right)^3 + \left(\frac{a}{4} + \frac{b}{6}\right)^3 = \frac{a^3}{32} + \frac{ab^2}{72}

Would you like further details or have any questions?

Here are 5 related questions for further practice:

  1. Simplify (xy)3+(x+y)3(x - y)^3 + (x + y)^3.
  2. Expand and simplify (2a3b)3(2a - 3b)^3.
  3. What is the sum of cubes identity?
  4. Simplify (a2b3)3+(a2+b3)3\left(\frac{a}{2} - \frac{b}{3}\right)^3 + \left(\frac{a}{2} + \frac{b}{3}\right)^3.
  5. Expand (a+b)3(a + b)^3.

Tip: In algebra, using identities can significantly simplify complex expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomials
Binomials
Cubic Identities

Formulas

x^3 + y^3 = (x + y)(x^2 - xy + y^2)
(a ± b)^3 = a^3 ± 3a^2b + 3ab^2 ± b^3

Theorems

Sum of Cubes Identity

Suitable Grade Level

Grades 10-12