Math Problem Statement

A=2/ (³√9 +³√3 +1 ), (A+1)³=?

Solution

We are tasked to calculate A=293+33+1A = \frac{2}{\sqrt[3]{9} + \sqrt[3]{3} + 1} and find (A+1)3(A + 1)^3.


Step 1: Simplify AA

Let: a=33.a = \sqrt[3]{3}. Then: A=2a2+a+1.A = \frac{2}{a^2 + a + 1}.


Step 2: Add 1 to AA

A+1=2a2+a+1+1=2+(a2+a+1)a2+a+1.A + 1 = \frac{2}{a^2 + a + 1} + 1 = \frac{2 + (a^2 + a + 1)}{a^2 + a + 1}. Simplify the numerator: A+1=a2+a+3a2+a+1.A + 1 = \frac{a^2 + a + 3}{a^2 + a + 1}.


Step 3: Cube A+1A + 1

We need to compute: (A+1)3=(a2+a+3a2+a+1)3.(A + 1)^3 = \left( \frac{a^2 + a + 3}{a^2 + a + 1} \right)^3. Let x=a2+a+1x = a^2 + a + 1. Then: A+1=x+2x.A + 1 = \frac{x + 2}{x}. Cubing it: (A+1)3=(x+2x)3=(x+2)3x3.(A + 1)^3 = \left( \frac{x + 2}{x} \right)^3 = \frac{(x + 2)^3}{x^3}. Expand (x+2)3(x + 2)^3: (x+2)3=x3+3x2(2)+3x(22)+23=x3+6x2+12x+8.(x + 2)^3 = x^3 + 3x^2(2) + 3x(2^2) + 2^3 = x^3 + 6x^2 + 12x + 8. Thus: (A+1)3=x3+6x2+12x+8x3.(A + 1)^3 = \frac{x^3 + 6x^2 + 12x + 8}{x^3}. Simplify: (A+1)3=1+6x2x3+12xx3+8x3.(A + 1)^3 = 1 + \frac{6x^2}{x^3} + \frac{12x}{x^3} + \frac{8}{x^3}. (A+1)3=1+6x+12x2+8x3.(A + 1)^3 = 1 + \frac{6}{x} + \frac{12}{x^2} + \frac{8}{x^3}.


Step 4: Substitute back x=a2+a+1x = a^2 + a + 1

Since a=33a = \sqrt[3]{3}, x=a2+a+1=1+33+93x = a^2 + a + 1 = 1 + \sqrt[3]{3} + \sqrt[3]{9}. Substituting this back to simplify the cube requires detailed rationalization or numerical approximation.

Would you like further simplification or a numerical evaluation?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Exponents and Roots
Rationalization
Simplification

Formulas

Cube root property: ³√a = a^(1/3)
Rationalization techniques for cubic roots
Binomial expansion formula: (x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3

Theorems

Properties of Exponents
Binomial Theorem

Suitable Grade Level

Grades 9-12