Math Problem Statement

Simplify the trigonometric expression below, considering only the values of β for which the expression is defined. cos(β)tan(β)csc(β)cot(β) Remember to put parentheses around the argument of any trigonometric function. can be found under the Greek Letters dropdown on the keypad.

Solution

We aim to simplify the expression cos(β)tan(β)csc(β)cot(β)\cos(\beta)\tan(\beta)\csc(\beta)\cot(\beta).

Step 1: Recall trigonometric identities

  1. tan(β)=sin(β)cos(β)\tan(\beta) = \frac{\sin(\beta)}{\cos(\beta)},
  2. csc(β)=1sin(β)\csc(\beta) = \frac{1}{\sin(\beta)},
  3. cot(β)=cos(β)sin(β)\cot(\beta) = \frac{\cos(\beta)}{\sin(\beta)}.

Substituting these into the expression:

cos(β)tan(β)csc(β)cot(β)=cos(β)sin(β)cos(β)1sin(β)cos(β)sin(β).\cos(\beta) \tan(\beta) \csc(\beta) \cot(\beta) = \cos(\beta) \cdot \frac{\sin(\beta)}{\cos(\beta)} \cdot \frac{1}{\sin(\beta)} \cdot \frac{\cos(\beta)}{\sin(\beta)}.

Step 2: Simplify the expression

Cancel terms wherever possible:

  1. sin(β)sin(β)=1\frac{\sin(\beta)}{\sin(\beta)} = 1,
  2. cos(β)cos(β)=1\frac{\cos(\beta)}{\cos(\beta)} = 1.

Thus, the expression simplifies to:

cos(β)sin(β)=cot(β).\frac{\cos(\beta)}{\sin(\beta)} = \cot(\beta).

Step 3: Determine the domain

For the expression to be defined:

  1. cos(β)0\cos(\beta) \neq 0 to avoid division by zero in tan(β)\tan(\beta) and cot(β)\cot(\beta),
  2. sin(β)0\sin(\beta) \neq 0 to avoid division by zero in csc(β)\csc(\beta) and cot(β)\cot(\beta).

The domain is therefore:

βnπandβπ2+nπ,where n is an integer.\beta \neq n\pi \quad \text{and} \quad \beta \neq \frac{\pi}{2} + n\pi, \quad \text{where } n \text{ is an integer}.

Final Answer:

cos(β)tan(β)csc(β)cot(β)=cot(β),defined for β{nπ,π2+nπ},where nZ.\cos(\beta)\tan(\beta)\csc(\beta)\cot(\beta) = \cot(\beta), \quad \text{defined for } \beta \notin \{n\pi, \frac{\pi}{2} + n\pi\}, \text{where } n \in \mathbb{Z}.

Would you like a breakdown of a specific step or further clarification?


Related Questions:

  1. How can we simplify sin(β)csc(β)+cos2(β)\sin(\beta)\csc(\beta) + \cos^2(\beta)?
  2. What is the domain of tan(β)cot(β)\tan(\beta)\cot(\beta)?
  3. Can cot(β)\cot(\beta) be rewritten in terms of only sin(β)\sin(\beta) and cos(β)\cos(\beta)?
  4. How does tan(β)\tan(\beta) behave near β=π2\beta = \frac{\pi}{2}?
  5. What are the key trigonometric identities used for simplifying expressions?

Tip:

Always check the domain of the original expression before simplifying, as simplification can obscure undefined points.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Simplification of Expressions
Trigonometric Functions and Their Domains

Formulas

tan(β) = sin(β) / cos(β)
csc(β) = 1 / sin(β)
cot(β) = cos(β) / sin(β)

Theorems

Domain of Trigonometric Functions

Suitable Grade Level

Grades 10-12