Math Problem Statement

Write the following expression as a single trigonometric function or a power of a trigonometric function.

StartFraction cosecant beta tangent beta Over secant beta EndFractioncscβ tanβsecβ

Question content area bottom

Part 1

Choose the correct answer below.

Solution

To simplify the expression

cscβtanβsecβ,\frac{\csc \beta \cdot \tan \beta}{\sec \beta},

we'll start by expressing each trigonometric function in terms of sine and cosine.

Step 1: Rewrite each trigonometric function

  1. Cosecant: cscβ=1sinβ\csc \beta = \frac{1}{\sin \beta}
  2. Tangent: tanβ=sinβcosβ\tan \beta = \frac{\sin \beta}{\cos \beta}
  3. Secant: secβ=1cosβ\sec \beta = \frac{1}{\cos \beta}

Step 2: Substitute these into the expression

Substituting these into the original expression gives:

cscβtanβsecβ=1sinβsinβcosβ1cosβ\frac{\csc \beta \cdot \tan \beta}{\sec \beta} = \frac{\frac{1}{\sin \beta} \cdot \frac{\sin \beta}{\cos \beta}}{\frac{1}{\cos \beta}}

Step 3: Simplify the expression

Now, simplify each part:

[ = \frac{\frac{\sin \beta}{\sin \beta \cdot \cos \beta}}{\frac{1}{\cos \beta}} = \cos

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Simplification of Trigonometric Expressions

Formulas

csc β = 1 / sin β
tan β = sin β / cos β
sec β = 1 / cos β

Theorems

Basic Trigonometric Identities

Suitable Grade Level

Grades 10-12