Math Problem Statement

Simplify: (a) (5 + j4)(3 + j7)(2 - j3), (b) (2 - j3)(3 + j2) / (4 - j3), (c) (cos 3x + j sin 3x) / (cos x + j sin x)

Solution

Let's solve these one by one.

(a) Simplify (5+j4)(3+j7)(2j3)(5 + j4)(3 + j7)(2 - j3)

We will simplify this expression in two stages. First, we'll multiply the first two complex numbers, and then multiply the result by the third.

  1. Multiply (5+j4)(5 + j4) and (3+j7)(3 + j7): (5+j4)(3+j7)=5(3)+5(j7)+j4(3)+j4(j7)(5 + j4)(3 + j7) = 5(3) + 5(j7) + j4(3) + j4(j7) Simplifying each term: =15+j35+j12+j2(28)= 15 + j35 + j12 + j^2(28) Recall that j2=1j^2 = -1, so: =15+j35+j1228= 15 + j35 + j12 - 28 Combine the real and imaginary parts: =(1528)+j(35+12)=13+j47= (15 - 28) + j(35 + 12) = -13 + j47

  2. Now multiply (13+j47)(-13 + j47) by (2j3)(2 - j3): (13+j47)(2j3)=(13)(2)+(13)(j3)+(j47)(2)+(j47)(j3)(-13 + j47)(2 - j3) = (-13)(2) + (-13)(-j3) + (j47)(2) + (j47)(-j3) Simplifying each term: =26+j39+j94+j2(141)= -26 + j39 + j94 + j^2(-141) Again, using j2=1j^2 = -1: =26+j39+j94+141= -26 + j39 + j94 + 141 Combine the real and imaginary parts: =(26+141)+j(39+94)=115+j133= (-26 + 141) + j(39 + 94) = 115 + j133 So, the simplified result of part (a) is: 115+j133115 + j133


(b) Simplify (2j3)(3+j2)(4j3)\frac{(2 - j3)(3 + j2)}{(4 - j3)}

  1. Multiply the numerator (2j3)(2 - j3) and (3+j2)(3 + j2): (2j3)(3+j2)=2(3)+2(j2)+(j3)(3)+(j3)(j2)(2 - j3)(3 + j2) = 2(3) + 2(j2) + (-j3)(3) + (-j3)(j2) Simplifying each term: =6+j4j9+j2(6)= 6 + j4 - j9 + j^2(-6) Using j2=1j^2 = -1: =6+j4j9+6=(6+6)+j(49)=12j5= 6 + j4 - j9 + 6 = (6 + 6) + j(4 - 9) = 12 - j5

  2. Now, simplify the denominator (4j3)(4 - j3): To simplify the division, multiply the numerator and denominator by the conjugate of the denominator, (4+j3)(4 + j3): 12j54j3×4+j34+j3=(12j5)(4+j3)(4j3)(4+j3)\frac{12 - j5}{4 - j3} \times \frac{4 + j3}{4 + j3} = \frac{(12 - j5)(4 + j3)}{(4 - j3)(4 + j3)}

  3. Simplify the denominator (4j3)(4+j3)(4 - j3)(4 + j3): This is a difference of squares: (4j3)(4+j3)=42(j3)2=16(9)=25(4 - j3)(4 + j3) = 4^2 - (j3)^2 = 16 - (-9) = 25

  4. Simplify the numerator (12j5)(4+j3)(12 - j5)(4 + j3): (12j5)(4+j3)=12(4)+12(j3)+(j5)(4)+(j5)(j3)(12 - j5)(4 + j3) = 12(4) + 12(j3) + (-j5)(4) + (-j5)(j3) Simplifying each term: =48+j36j20+j2(15)= 48 + j36 - j20 + j^2(-15) Again, using j2=1j^2 = -1: =48+j36j20+15=(48+15)+j(3620)=63+j16= 48 + j36 - j20 + 15 = (48 + 15) + j(36 - 20) = 63 + j16

  5. Final simplification: 63+j1625=6325+j1625\frac{63 + j16}{25} = \frac{63}{25} + j\frac{16}{25} So the simplified result is: 2.52+j0.642.52 + j0.64


(c) Simplify cos3x+jsin3xcosx+jsinx\frac{\cos 3x + j \sin 3x}{\cos x + j \sin x}

This can be recognized as a quotient of complex numbers in polar form, which is represented as: ejθ=cosθ+jsinθe^{j\theta} = \cos \theta + j \sin \theta So, the expression can be rewritten as: ej3xejx=ej(3xx)=ej2x=cos2x+jsin2x\frac{e^{j3x}}{e^{jx}} = e^{j(3x - x)} = e^{j2x} = \cos 2x + j \sin 2x Thus, the simplified form is: cos2x+jsin2x\cos 2x + j \sin 2x


Let me know if you'd like more details on any part of this solution or if you have further questions.

Follow-up questions:

  1. How do you multiply two complex numbers using the distributive property?
  2. What is the significance of multiplying by the conjugate when simplifying complex fractions?
  3. How does Euler's formula help simplify expressions involving trigonometric functions and imaginary numbers?
  4. Can you demonstrate how to simplify another complex number division?
  5. What is the importance of j2=1j^2 = -1 when simplifying complex expressions?

Tip:

When multiplying complex numbers, always remember to apply the distributive property carefully, and never forget that j2=1j^2 = -1, which helps in simplifying terms involving imaginary units.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Multiplication of Complex Numbers
Division of Complex Numbers
Polar Form
Euler's Formula

Formulas

(a + jb)(c + jd) = (ac - bd) + j(ad + bc)
(a + jb) / (c + jd) = [(a + jb)(c - jd)] / [(c + jd)(c - jd)]
e^(jθ) = cos(θ) + j sin(θ)

Theorems

Euler's Formula
Difference of Squares

Suitable Grade Level

Grades 10-12