Math Problem Statement

simplify: 2 + sqrt -8, - sqrt -98, sqrt -216, - sqrt -36, i sqrt -32, sqrt -128, (3i)(-4i)(7i), (-3i)-(3i), (2i)(-8i), (-4i)+(3i), -8i \cdot 4i \cdot i, (8i)^2, i^67, i^45, i^14, i^39300, i^8940, i^50, (-4 - 7i) - (-6+4i), (-5 - 4i) + (-3 + 2i), (4 + 5i)(-7 - 2i) + (1 - 5i) - (-1 + 7i), (-2i)(-5 + 3i)(3 - 8i), 2 sqrt -3 \cdot sqrt -12, (8+i)^2, (-4 + 5i)(-5 + 5i), (-6i)(-7 + 8i) + (i)(-i), -6 (-4i) + (2i)(8 + 5i), sqrt -10 \cdotsqrt -12, (-8 + 7i) + (-4 + 8i) - (1 + 7i)

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Imaginary Numbers
Operations on Complex Numbers

Formulas

i^2 = -1
√-x = i√x
Multiplication and addition of complex numbers
Power reduction for imaginary units i^n

Theorems

Imaginary Unit Cyclic Powers (i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1)

Suitable Grade Level

Grades 10-12