Math Problem Statement

If f(x)=4x2+5xf(x)=4x2+5x and g(x)=28−4x2g(x)=28-4x2,

Find and simplify (f+g)(x)(f+g)(x) and state its domain using interval notation

(f+g)(x)=(f+g)(x)=

Domain of (f+g)(x)(f+g)(x) :

Find and simplify (f−g)(x)(f-g)(x) and state its domain using interval notation

(f−g)(x)=(f-g)(x)=

Domain of (f−g)(x)(f-g)(x) :

Find and simplify (fg)(x)(fg)(x) and state its domain using interval notation

(fg)(x)=(fg)(x)=

Domain of (fg)(x)(fg)(x) :

Find (fg)(x)(fg)(x) and state its domain using interval notation

(fg)(x)=(fg)(x)=

Domain of (fg)(x)(fg)(x) :

Solution

We are given the functions:

  • f(x)=4x2+5xf(x) = 4x^2 + 5x
  • g(x)=284x2g(x) = 28 - 4x^2

We need to perform several operations on these functions and determine their domains.


1. Find and simplify (f+g)(x)(f + g)(x)

(f+g)(x)=f(x)+g(x)(f + g)(x) = f(x) + g(x)

Substitute the given functions:

(f+g)(x)=(4x2+5x)+(284x2)(f + g)(x) = (4x^2 + 5x) + (28 - 4x^2)

Simplify the expression:

(f+g)(x)=4x24x2+5x+28=5x+28(f + g)(x) = 4x^2 - 4x^2 + 5x + 28 = 5x + 28

Domain of (f+g)(x)(f + g)(x):

Since 5x+285x + 28 is a linear function, there are no restrictions on xx. The domain is all real numbers:

Domain of (f+g)(x)=(,)\text{Domain of } (f + g)(x) = (-\infty, \infty)


2. Find and simplify (fg)(x)(f - g)(x)

(fg)(x)=f(x)g(x)(f - g)(x) = f(x) - g(x)

Substitute the given functions:

(fg)(x)=(4x2+5x)(284x2)(f - g)(x) = (4x^2 + 5x) - (28 - 4x^2)

Simplify the expression:

(fg)(x)=4x2+5x28+4x2=8x2+5x28(f - g)(x) = 4x^2 + 5x - 28 + 4x^2 = 8x^2 + 5x - 28

Domain of (fg)(x)(f - g)(x):

Since 8x2+5x288x^2 + 5x - 28 is a quadratic function, there are no restrictions on xx. The domain is all real numbers:

Domain of (fg)(x)=(,)\text{Domain of } (f - g)(x) = (-\infty, \infty)


3. Find and simplify (fg)(x)(fg)(x)

(fg)(x)=f(x)g(x)(fg)(x) = f(x) \cdot g(x)

Substitute the given functions:

(fg)(x)=(4x2+5x)(284x2)(fg)(x) = (4x^2 + 5x)(28 - 4x^2)

Now expand the product:

(fg)(x)=4x2(284x2)+5x(284x2)(fg)(x) = 4x^2(28 - 4x^2) + 5x(28 - 4x^2)

=4x2(28)4x2(4x2)+5x(28)5x(4x2)= 4x^2(28) - 4x^2(4x^2) + 5x(28) - 5x(4x^2)

=112x216x4+140x20x3= 112x^2 - 16x^4 + 140x - 20x^3

Rearrange terms in descending powers of xx:

(fg)(x)=16x420x3+112x2+140x(fg)(x) = -16x^4 - 20x^3 + 112x^2 + 140x

Domain of (fg)(x)(fg)(x):

Since (fg)(x)(fg)(x) is a polynomial, there are no restrictions on xx. The domain is all real numbers:

Domain of (fg)(x)=(,)\text{Domain of } (fg)(x) = (-\infty, \infty)


Summary:

  1. (f+g)(x)=5x+28(f + g)(x) = 5x + 28, Domain: (,)(-\infty, \infty)
  2. (fg)(x)=8x2+5x28(f - g)(x) = 8x^2 + 5x - 28, Domain: (,)(-\infty, \infty)
  3. (fg)(x)=16x420x3+112x2+140x(fg)(x) = -16x^4 - 20x^3 + 112x^2 + 140x, Domain: (,)(-\infty, \infty)

Would you like further clarification on any part of this process? Here are some related questions for further exploration:

  1. What are the roots of f(x)+g(x)=0f(x) + g(x) = 0?
  2. How do you factor f(x)g(x)f(x) - g(x)?
  3. Can you determine the critical points of (fg)(x)(fg)(x)?
  4. What is the behavior of (fg)(x)(fg)(x) as xx \to \infty?
  5. What is the degree of (fg)(x)(fg)(x)?

Tip: Always check the domain for each function before performing any operations, especially when dealing with rational or logarithmic functions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Operations
Function Addition
Function Subtraction
Function Multiplication

Formulas

(f + g)(x) = f(x) + g(x)
(f - g)(x) = f(x) - g(x)
(f * g)(x) = f(x) * g(x)

Theorems

Domain of Polynomial Functions

Suitable Grade Level

Grades 9-12