Math Problem Statement

حاصل عبارت زیر را پیدا کم

حاصل عبارت زیر را پیدا کم

Solution

The given mathematical expression in the image is:

1x23x8\frac{1}{\sqrt{x} - 2} - \frac{3}{x - 8}

To simplify or solve this expression, the steps are as follows:


Step 1: Find the common denominator

The denominators are x2\sqrt{x} - 2 and x8x - 8. Their least common denominator (LCD) is:

(x2)(x8)(\sqrt{x} - 2)(x - 8)


Step 2: Rewrite each fraction with the common denominator

1x2=x8(x2)(x8)\frac{1}{\sqrt{x} - 2} = \frac{x - 8}{(\sqrt{x} - 2)(x - 8)} 3x8=3(x2)(x2)(x8)\frac{3}{x - 8} = \frac{3(\sqrt{x} - 2)}{(\sqrt{x} - 2)(x - 8)}


Step 3: Combine the fractions

Now that both fractions have the same denominator, combine the numerators:

x8(x2)(x8)3(x2)(x2)(x8)\frac{x - 8}{(\sqrt{x} - 2)(x - 8)} - \frac{3(\sqrt{x} - 2)}{(\sqrt{x} - 2)(x - 8)}

=(x8)3(x2)(x2)(x8)= \frac{(x - 8) - 3(\sqrt{x} - 2)}{(\sqrt{x} - 2)(x - 8)}


Step 4: Simplify the numerator

Expand and simplify the numerator:

(x8)3(x2)=x83x+6=x23x(x - 8) - 3(\sqrt{x} - 2) = x - 8 - 3\sqrt{x} + 6 = x - 2 - 3\sqrt{x}

So the numerator becomes:

x23xx - 2 - 3\sqrt{x}


Final Expression

The simplified expression is:

x23x(x2)(x8)\frac{x - 2 - 3\sqrt{x}}{(\sqrt{x} - 2)(x - 8)}


If you would like me to explain any of the steps further or solve for specific values of xx, feel free to ask!


Related Questions:

  1. How do we find the domain of this expression?
  2. What happens when x=2\sqrt{x} = 2 or x=8x = 8?
  3. How can this expression be simplified further for specific values of xx?
  4. What does this expression represent graphically?
  5. Can this expression be rewritten without square roots in the numerator?

Tip:

Always check the domain restrictions for expressions involving square roots and denominators to avoid undefined values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplifying Rational Expressions
Square Roots
Algebraic Fractions

Formulas

Least Common Denominator (LCD)
Simplifying Fractions

Theorems

Properties of Fractions
Simplification Rules

Suitable Grade Level

Grades 10-12