Math Problem Statement

Sederhanakan a ^ 2 * b ^ - 2 )^ 3 ((2a) ^ 3 * b) ^ - 2

Solution

To simplify the expression:

(a2b2)3((2a)3b)2\left(a^2 \cdot b^{-2}\right)^3 \cdot \left((2a)^3 \cdot b\right)^{-2}

Step 1: Simplify each part individually.

For (a2b2)3\left(a^2 \cdot b^{-2}\right)^3:

Apply the exponent to both a2a^2 and b2b^{-2}:

(a2b2)3=a23b23=a6b6\left(a^2 \cdot b^{-2}\right)^3 = a^{2 \cdot 3} \cdot b^{-2 \cdot 3} = a^6 \cdot b^{-6}

For ((2a)3b)2\left((2a)^3 \cdot b\right)^{-2}:

First, simplify (2a)3(2a)^3 and then apply the 2-2 exponent:

(2a)3=23a3=8a3(2a)^3 = 2^3 \cdot a^3 = 8a^3

Now apply the 2-2 exponent:

(8a3b)2=(8a3)2b2=82a6b2=164a6b2\left(8a^3 \cdot b\right)^{-2} = (8a^3)^{-2} \cdot b^{-2} = 8^{-2} \cdot a^{-6} \cdot b^{-2} = \frac{1}{64} \cdot a^{-6} \cdot b^{-2}

Step 2: Combine the results.

Now multiply the two parts:

(a6b6)(164a6b2)\left(a^6 \cdot b^{-6}\right) \cdot \left(\frac{1}{64} \cdot a^{-6} \cdot b^{-2}\right)

=164a6+(6)b6+(2)=164a0b8= \frac{1}{64} \cdot a^{6 + (-6)} \cdot b^{-6 + (-2)} = \frac{1}{64} \cdot a^0 \cdot b^{-8}

Since a0=1a^0 = 1, the final simplified expression is:

164b8=164b8\frac{1}{64} \cdot b^{-8} = \frac{1}{64b^8}

Final Answer:

164b8\boxed{\frac{1}{64b^8}}

Would you like more details or have any questions?

Related questions:

  1. How do we apply exponents when there are negative powers?
  2. What are the rules for multiplying and dividing terms with exponents?
  3. How can we simplify expressions involving multiple variables?
  4. What happens when we raise a product to a negative exponent?
  5. How do fractional exponents relate to roots?

Tip:

When simplifying, always handle powers and parentheses step-by-step, especially when dealing with negative exponents.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Algebraic Simplification
Negative Exponents
Power of a Product

Formulas

Power of a Product: (ab)^n = a^n * b^n
Negative Exponent: a^(-n) = 1/a^n
Multiplication of Powers: a^m * a^n = a^(m+n)

Theorems

Laws of Exponents
Negative Exponent Rule
Power of a Product Rule

Suitable Grade Level

Grades 9-11