Math Problem Statement

Simplify: 1/2(a-2b) + 3/2(b-2a)

Solution

To simplify the expression 12(a2b)+32(b2a)\frac{1}{2}(a - 2b) + \frac{3}{2}(b - 2a), let's follow these steps:

Step 1: Distribute the fractions

Distribute both 12\frac{1}{2} and 32\frac{3}{2} inside the parentheses:

12(a2b)=12a12(2b)=12ab\frac{1}{2}(a - 2b) = \frac{1}{2}a - \frac{1}{2}(2b) = \frac{1}{2}a - b

32(b2a)=32b32(2a)=32b3a\frac{3}{2}(b - 2a) = \frac{3}{2}b - \frac{3}{2}(2a) = \frac{3}{2}b - 3a

Step 2: Combine the simplified terms

Now add the two expressions:

(12ab)+(32b3a)\left( \frac{1}{2}a - b \right) + \left( \frac{3}{2}b - 3a \right)

Step 3: Group like terms

Group the terms with aa and the terms with bb:

(12a3a)+(b+32b)\left( \frac{1}{2}a - 3a \right) + \left( -b + \frac{3}{2}b \right)

Step 4: Simplify each group

For the aa-terms:

12a3a=12a62a=52a\frac{1}{2}a - 3a = \frac{1}{2}a - \frac{6}{2}a = \frac{-5}{2}a

For the bb-terms:

b+32b=22b+32b=12b-b + \frac{3}{2}b = \frac{-2}{2}b + \frac{3}{2}b = \frac{1}{2}b

Final Expression

Now combine the results:

52a+12b\frac{-5}{2}a + \frac{1}{2}b

Thus, the simplified expression is:

52a+12b\frac{-5}{2}a + \frac{1}{2}b


Would you like more details or have any questions about the steps? Here are 5 related questions for further practice:

  1. Simplify 23(xy)+13(yx)\frac{2}{3}(x - y) + \frac{1}{3}(y - x).
  2. Factor the expression 52a+12b\frac{-5}{2}a + \frac{1}{2}b.
  3. Simplify 2a(3a+5b)2a - (3a + 5b).
  4. Expand and simplify 14(2x3y)+12(4yx)\frac{1}{4}(2x - 3y) + \frac{1}{2}(4y - x).
  5. Simplify 13(6x9y)+12(4y3x)\frac{1}{3}(6x - 9y) + \frac{1}{2}(4y - 3x).

Tip: When simplifying algebraic expressions, always distribute the coefficients first, then combine like terms step by step to avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Simplification of Expressions
Combining Like Terms

Formulas

Distributive Property a(b + c) = ab + ac
Combining Like Terms

Theorems

-

Suitable Grade Level

Grades 7-9