Math Problem Statement

simplify (a^2 - ab + 1/2b^2) (3/4a^2 + 2ab -b^2)

Solution

Let's simplify the expression (a2ab+12b2)(34a2+2abb2)(a^2 - ab + \frac{1}{2}b^2)(\frac{3}{4}a^2 + 2ab - b^2).

To do this, we'll apply the distributive property (also known as the FOIL method for binomials) and multiply each term in the first parenthesis by every term in the second parenthesis. Here’s the step-by-step process:

Given expression: (a2ab+12b2)(34a2+2abb2)(a^2 - ab + \frac{1}{2}b^2)(\frac{3}{4}a^2 + 2ab - b^2)

Step 1: Multiply a2a^2 by every term in 34a2+2abb2\frac{3}{4}a^2 + 2ab - b^2

a234a2=34a4a^2 \cdot \frac{3}{4}a^2 = \frac{3}{4}a^4 a22ab=2a3ba^2 \cdot 2ab = 2a^3b a2(b2)=a2b2a^2 \cdot (-b^2) = -a^2b^2

Step 2: Multiply ab-ab by every term in 34a2+2abb2\frac{3}{4}a^2 + 2ab - b^2

ab34a2=34a3b-ab \cdot \frac{3}{4}a^2 = -\frac{3}{4}a^3b ab2ab=2a2b2-ab \cdot 2ab = -2a^2b^2 ab(b2)=ab3-ab \cdot (-b^2) = ab^3

Step 3: Multiply 12b2\frac{1}{2}b^2 by every term in 34a2+2abb2\frac{3}{4}a^2 + 2ab - b^2

12b234a2=38a2b2\frac{1}{2}b^2 \cdot \frac{3}{4}a^2 = \frac{3}{8}a^2b^2 12b22ab=ab3\frac{1}{2}b^2 \cdot 2ab = ab^3 12b2(b2)=12b4\frac{1}{2}b^2 \cdot (-b^2) = -\frac{1}{2}b^4

Step 4: Combine all the terms

Now we collect all the terms: 34a4+2a3ba2b234a3b2a2b2+ab3+38a2b2+ab312b4\frac{3}{4}a^4 + 2a^3b - a^2b^2 - \frac{3}{4}a^3b - 2a^2b^2 + ab^3 + \frac{3}{8}a^2b^2 + ab^3 - \frac{1}{2}b^4

Step 5: Simplify the terms

  • a4a^4 terms: 34a4\frac{3}{4}a^4
  • a3ba^3b terms: 2a3b34a3b=54a3b2a^3b - \frac{3}{4}a^3b = \frac{5}{4}a^3b
  • a2b2a^2b^2 terms: a2b22a2b2+38a2b2=258a2b2-a^2b^2 - 2a^2b^2 + \frac{3}{8}a^2b^2 = -\frac{25}{8}a^2b^2
  • ab3ab^3 terms: ab3+ab3=2ab3ab^3 + ab^3 = 2ab^3
  • b4b^4 term: 12b4-\frac{1}{2}b^4

Final simplified expression:

34a4+54a3b258a2b2+2ab312b4\frac{3}{4}a^4 + \frac{5}{4}a^3b - \frac{25}{8}a^2b^2 + 2ab^3 - \frac{1}{2}b^4

This is the simplified form of the given expression.

Would you like further details or explanations on any step? Here are five related questions to practice:

  1. Simplify (a23ab+b2)(2ab)(a^2 - 3ab + b^2)(2a - b).
  2. Expand (2x2xy+y2)(x+y)(2x^2 - xy + y^2)(x + y).
  3. Factor a4+5a3b25a2b2+16ab3b4a^4 + 5a^3b - 25a^2b^2 + 16ab^3 - b^4.
  4. Simplify (x2+y)(x32xy+y2)(x^2 + y)(x^3 - 2xy + y^2).
  5. Expand and simplify (2a+b)(a2ab+b2)(2a + b)(a^2 - ab + b^2).

Tip: When simplifying expressions involving polynomials, always look for like terms to combine after expansion.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Expansion
Distributive Property

Formulas

Distributive Property: (x + y)(a + b) = xa + xb + ya + yb
Combining like terms in polynomials

Theorems

-

Suitable Grade Level

Grades 9-12