Math Problem Statement

(9^ -8)^0/9^ -4

Solution

The given expression is:

(98)094\frac{(9^{-8})^0}{9^{-4}}

Step-by-step solution:

  1. Simplify (98)0(9^{-8})^0: Any non-zero number raised to the power of 0 equals 1. So: (98)0=1(9^{-8})^0 = 1

    Now the expression becomes: 194\frac{1}{9^{-4}}

  2. Simplify the denominator 949^{-4}: Using the negative exponent rule, an=1ana^{-n} = \frac{1}{a^n}, we can rewrite 949^{-4} as: 94=1949^{-4} = \frac{1}{9^4}

    So the expression now is: 1194=94\frac{1}{\frac{1}{9^4}} = 9^4

Final answer:

94=65619^4 = 6561

So, the value of the given expression is 6561.

Would you like more details or have any further questions?

Here are some related questions for further practice:

  1. Simplify (53)052\frac{(5^{-3})^0}{5^{-2}}.
  2. Simplify (75)273\frac{(7^{-5})^2}{7^{-3}}.
  3. What is (23)022\frac{(2^3)^0}{2^{-2}}?
  4. Evaluate (102)0101\frac{(10^{-2})^0}{10^{-1}}.
  5. Simplify (36)035\frac{(3^{-6})^0}{3^{-5}}.

Tip: Any base (except 0) raised to the power of 0 always equals 1!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Negative Exponents
Exponent Rules

Formulas

a^0 = 1 (for a ≠ 0)
a^{-n} = 1 / a^n

Theorems

Exponentiation Rule: Any non-zero base raised to the power of 0 is 1
Negative Exponent Rule: a^{-n} = 1 / a^n

Suitable Grade Level

Grades 8-10