Math Problem Statement

simplify (6 - 3 root 5) / (2 + root 5)

Solution

To simplify 6352+5\frac{6 - 3\sqrt{5}}{2 + \sqrt{5}}, we multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of 2+52 + \sqrt{5} is 252 - \sqrt{5}.

Let's go through the steps:

  1. Multiply the numerator and denominator by the conjugate of the denominator: 6352+5×2525=(635)(25)(2+5)(25)\frac{6 - 3\sqrt{5}}{2 + \sqrt{5}} \times \frac{2 - \sqrt{5}}{2 - \sqrt{5}} = \frac{(6 - 3\sqrt{5})(2 - \sqrt{5})}{(2 + \sqrt{5})(2 - \sqrt{5})}

  2. Simplify the denominator: (2+5)(25)=22(5)2=45=1(2 + \sqrt{5})(2 - \sqrt{5}) = 2^2 - (\sqrt{5})^2 = 4 - 5 = -1

  3. Expand the numerator: (635)(25)=6×26×535×2+35×5(6 - 3\sqrt{5})(2 - \sqrt{5}) = 6 \times 2 - 6 \times \sqrt{5} - 3\sqrt{5} \times 2 + 3\sqrt{5} \times \sqrt{5} Simplifying each term: 126565+15=12125+1512 - 6\sqrt{5} - 6\sqrt{5} + 15 = 12 - 12\sqrt{5} + 15 Combine like terms: 2712527 - 12\sqrt{5}

  4. Final simplified expression: Now, we have: 271251=27+125\frac{27 - 12\sqrt{5}}{-1} = -27 + 12\sqrt{5}

Hence, the simplified form of the given expression is:

27+125-27 + 12\sqrt{5}

Do you want more details or have any questions?

Here are some related problems:

  1. Simplify 4+2333\frac{4 + 2\sqrt{3}}{3 - \sqrt{3}}.
  2. Rationalize the denominator of 523+2\frac{5 - \sqrt{2}}{3 + \sqrt{2}}.
  3. Simplify 73222\frac{7 - 3\sqrt{2}}{2 - \sqrt{2}}.
  4. Simplify 1+62+3\frac{1 + \sqrt{6}}{2 + \sqrt{3}}.
  5. Find the conjugate of 3+273 + 2\sqrt{7}.

Tip: The conjugate of a binomial expression a+bca + b\sqrt{c} is abca - b\sqrt{c}. Multiplying by the conjugate helps to eliminate the square root in the denominator.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Rationalizing the Denominator
Conjugates
Radicals

Formulas

Conjugate of (a + b√c) is (a - b√c)
(a + b√c)(a - b√c) = a² - (b√c)²
Simplification of radicals

Theorems

Conjugate Theorem
Difference of Squares

Suitable Grade Level

Grades 9-12